Analysis of the surface condition of removed bone implants
暂无分享,去创建一个
[1] J. Celis,et al. Increasing the tribological performances of Ti–6Al–4V alloy by forming a thin nanoporous TiO2 layer and hydroxyapatite electrodeposition under lubricated conditions , 2014 .
[2] G. Dong,et al. High temperature passive film on the surface of Co–Cr–Mo alloy and its tribological properties , 2014 .
[3] Z. Liao,et al. Influence of thermal oxidation temperature on the microstructural and tribological behavior of Ti6Al4V alloy , 2014 .
[4] J. Sidun,et al. Characterization of fretting products between austenitic and martensitic stainless steels using Mössbauer and X-ray techniques , 2013 .
[5] S. Mischler,et al. Tribo-electrochemical characterization of metallic biomaterials for total joint replacement. , 2012, Acta biomaterialia.
[6] T. Kokubo,et al. REVIEW Bioactive metals: preparation and properties , 2004, Journal of materials science. Materials in medicine.
[7] M. Niinomi,et al. An investigation of the effect of fatigue deformation on the residual mechanical properties of Ti-6Al-4V ELI , 2000 .
[8] Bengt Herbert Kasemo,et al. Biological surface science , 1998 .
[9] H. Rack,et al. Titanium alloys in total joint replacement--a materials science perspective. , 1998, Biomaterials.
[10] Paweł Artur Mazurek,et al. Wybrane zagadnienia z inżynierii biomedycznej , 2016 .
[11] J. Sidun,et al. Fretting and fretting corrosion of 316L implantation steel in the oral cavity environment , 2014 .
[12] M. Wimmer,et al. Synergism effects during friction and fretting corrosion experiments – focusing on biomaterials used as orthopedic implants , 2013 .
[13] J. Sidun. Evaluation of wear processes of titanium plates used for internal maxillofacial fixation , 2010 .
[14] J. Dąbrowski,et al. Aspekty biomechaniczne uszkodzeń minipłytek zespalających kości twarzoczaszki , 2009 .
[15] K. Friedrich,et al. Characterization of wear in composite material orthopaedic implants. Part II: The implant/bone interface. , 1994, Bio-medical materials and engineering.