Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 1. Principles and experimental demonstration.

An optoelectronic implementation of a modified FitzHugh-Nagumo neuron model is proposed, analyzed, and experimentally demonstrated. The setup uses linear optics and linear electronics for implementing an optical wavelength-domain nonlinearity. The system attains instability through a bifurcation mechanism present in a class of neuron models, a fact that is shown analytically. The implementation exhibits basic features of neural dynamics including threshold, production of short pulses (or spikes), and refractoriness.

[1]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[2]  Manuel G. Velarde,et al.  A Simple Generalized Excitability Model Mimicking Salient Features of Neuron Dynamics , 2000 .

[3]  Chaos in a feedback Fabry-Perot interferometer , 1994 .

[4]  Dean V. Buonomano,et al.  A Neural Network Model of Temporal Code Generation and Position-Invariant Pattern Recognition , 1999, Neural Computation.

[5]  Reinhard Eckhorn,et al.  Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex , 1990, Neural Computation.

[6]  S. Kang,et al.  A simple rate-equation-based thermal VCSEL model , 1999 .

[7]  Wolfgang Maass,et al.  Fast Sigmoidal Networks via Spiking Neurons , 1997, Neural Computation.

[8]  D. Psaltis,et al.  Holography in artificial neural networks , 1990, Nature.

[9]  Carsten Peterson,et al.  Optoelectronic implementation of multilayer neural networks in a single photorefractive crystal , 1990 .

[10]  D. Gauthier,et al.  High-speed chaos in an optical feedback system with flexible timescales , 2003, IEEE Journal of Quantum Electronics.

[11]  D. Brady,et al.  Adaptive optical networks using photorefractive crystals. , 1988, Applied optics.

[12]  D Psaltis,et al.  Optical information processing based on an associative-memory model of neural nets with thresholding and feedback. , 1985, Optics letters.

[13]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.

[14]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[15]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[16]  J N Lee,et al.  Optical implementations of associative networks with versatile adaptive learning capabilities. , 1987, Applied optics.

[17]  Jörgen Bengtsson,et al.  A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers , 2002 .

[18]  J. L. Johnson,et al.  Observation of periodic waves in a pulse-coupled neural network. , 1993, Optics letters.

[19]  Shuo Tang,et al.  Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback , 2001 .

[20]  Wlodzimierz Nakwaski,et al.  Thermal aspects of efficient operation of vertical-cavity surface-emitting lasers , 1996 .

[21]  G Roosen,et al.  High-capacity photorefractive neural network implementing a kohonen topological map. , 2001, Applied optics.

[22]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[23]  H. Porte,et al.  Bistability in wavelength using an electro-optically tuned dye laser , 1984 .

[24]  K Wagner,et al.  Multilayer optical learning networks. , 1987, Applied optics.

[25]  Michael Recce Encoding information in neuronal activity , 1999 .

[26]  D Psaltis,et al.  Optical implementation of the Hopfield model. , 1985, Applied optics.

[27]  Alan F. Murray,et al.  Pulse-based computation in VLSI neural networks , 1999 .

[28]  Laurent Larger,et al.  Chaos in wavelength with a feedback tunable laser diode , 1998 .

[29]  Bernabe Linares-Barranco,et al.  A CMOS Implementation of Fitzhugh-Nagumo Neuron Model , 1990, ESSCIRC '90: Sixteenth European Solid-State Circuits Conference.

[30]  Indu Saxena,et al.  Discrete All-Positive Multilayer Perceptrons for Optical Implementation , 1998 .

[31]  Sorin Draghici,et al.  On the capabilities of neural networks using limited precision weights , 2002, Neural Networks.

[32]  D Z Anderson,et al.  Acoustic signal recognition with a photorefractive time-delay neural network. , 1994, Optics letters.

[33]  Kelvin Wagner,et al.  Optical competitive learning with, VLSI/liquid-crystal winner-take-all modulators. , 1993, Applied optics.

[34]  Ingo Fischer,et al.  Transverse modes in thermally detuned oxide confined vertical cavity surface emitting lasers , 2001 .

[35]  Rahul Sarpeshkar,et al.  Scalable Hybrid Computation with Spikes , 2002, Neural Computation.

[36]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[37]  H. de Waardt,et al.  Optical neuron by use of a laser diode with injection seeding and external optical feedback , 2000, IEEE Trans. Neural Networks Learn. Syst..

[38]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[39]  Paulo E X Silveira,et al.  Optical finite impulse response neural networks. , 2002, Applied optics.

[40]  L. Abbott,et al.  Model neurons: From Hodgkin-Huxley to hopfield , 1990 .