The weight distributions of constacyclic codes

Let \begin{document}$\Bbb F_q$\end{document} be a finite field with \begin{document}$q$\end{document} elements. Suppose that \begin{document}$a, λ∈ \Bbb F_q^*$\end{document} , \begin{document}$a^n=λ$\end{document} with \begin{document}$n|(q-1)$\end{document} . In this paper, we determine the weight distribution of a class of \begin{document}$λ$\end{document} -constacyclic codes of length \begin{document}$nm$\end{document} with the parity check polynomial \begin{document}$h(x)=(x^m-aξ^{st})(x^m-aξ^{s(t+1)})...(x^m-aξ^{s(t+r-1)})$\end{document} and \begin{document}$n>(r-1)m$\end{document} , where \begin{document}$s,t, r$\end{document} are positive integers and \begin{document}$ξ∈ \Bbb F_q$\end{document} is a primitive n-th root of unity. Moreover, we give the weight distributions of \begin{document}$λ$\end{document} -constacyclic codes of length \begin{document}$nm$\end{document} explicitly in several cases: (1) \begin{document}$r=1$\end{document} , \begin{document}$n>1$\end{document} ; (2) \begin{document}$r=2$\end{document} , \begin{document}$m=2$\end{document} and \begin{document}$n>2$\end{document} ; (3) \begin{document}$r=2$\end{document} , \begin{document}$m=3$\end{document} and \begin{document}$n>3$\end{document} ; (4) \begin{document}$r=3$\end{document} , \begin{document}$m=2$\end{document} and \begin{document}$n>4$\end{document} .

[1]  Hai Q. Dinh,et al.  Repeated-root constacyclic codes of length 2ps , 2012, Finite Fields Their Appl..

[2]  Cunsheng Ding,et al.  The weight distribution of a class of linear codes from perfect nonlinear functions , 2006, IEEE Transactions on Information Theory.

[3]  Lei Hu,et al.  The weight distribution of a class of p-ary cyclic codes , 2010, Finite Fields Their Appl..

[4]  Hai Quang Dinh,et al.  On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions , 2008, Finite Fields Their Appl..

[5]  Jing Yang,et al.  Weight Distribution of a Class of Cyclic Codes With Arbitrary Number of Zeros , 2013, IEEE Transactions on Information Theory.

[6]  Hongwei Liu,et al.  Constacyclic codes over finite fields , 2012, Finite Fields Their Appl..

[7]  Yixian Yang,et al.  The Weight Distributions of Cyclic Codes and Elliptic Curves , 2011, IEEE Transactions on Information Theory.

[8]  Xiangyong Zeng,et al.  A class of binary cyclic codes with five weights , 2010 .

[9]  Hongwei Liu,et al.  Repeated-root constacyclic codes of length ℓp5 and their duals , 2014, Discret. Appl. Math..

[10]  Jacques Wolfmann,et al.  Weight distributions of some binary primitive cyclic codes , 1994, IEEE Trans. Inf. Theory.

[11]  Chengju Li,et al.  Weight distributions of cyclic codes with respect to pairwise coprime order elements , 2013, Finite Fields Their Appl..

[12]  Yuansheng Tang,et al.  Cyclic Codes and Sequences: The Generalized Kasami Case , 2009, IEEE Transactions on Information Theory.

[13]  Rudolf Lide,et al.  Finite fields , 1983 .

[14]  Cunsheng Ding,et al.  The Weight Distributions of the Duals of Cyclic Codes With Two Zeros , 2011, IEEE Transactions on Information Theory.

[15]  Lei Hu,et al.  The weight distributions of two classes of p-ary cyclic codes , 2014, Finite Fields Their Appl..

[16]  Cunsheng Ding,et al.  The Weight Distribution of Some Irreducible Cyclic Codes , 2009, IEEE Transactions on Information Theory.

[17]  Liqin Hu,et al.  Weight distributions of cyclic codes of length tlm , 2015, Discret. Math..

[18]  Pascale Charpin,et al.  Cyclic codes with few weights and Niho exponents , 2004, J. Comb. Theory, Ser. A.

[19]  Cunsheng Ding,et al.  Hamming weights in irreducible cyclic codes , 2011, Discret. Math..

[20]  Nigel Boston,et al.  The weight distributions of cyclic codes with two zeros and zeta functions , 2010, J. Symb. Comput..

[21]  Chengju Li,et al.  Hamming Weights of the Duals of Cyclic Codes With Two Zeros , 2014, IEEE Transactions on Information Theory.

[22]  Gerardo Vega,et al.  The Weight Distribution of an Extended Class of Reducible Cyclic Codes , 2012, IEEE Transactions on Information Theory.

[23]  Cunsheng Ding,et al.  A Family of Five-Weight Cyclic Codes and Their Weight Enumerators , 2013, IEEE Transactions on Information Theory.

[24]  Gary McGuire On three weights in cyclic codes with two zeros , 2004, Finite Fields Their Appl..

[25]  Hongwei Liu,et al.  Repeated-root constacyclic codes of length slmpn , 2015, Finite Fields Their Appl..

[26]  Cunsheng Ding,et al.  The Weight Enumerator of a Class of Cyclic Codes , 2011, IEEE Transactions on Information Theory.

[27]  Keqin Feng,et al.  On the Weight Distributions of Two Classes of Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[28]  Maosheng Xiong,et al.  The weight distributions of a class of cyclic codes II , 2011, Finite Fields Their Appl..

[29]  Cunsheng Ding,et al.  A class of three-weight cyclic codes , 2013, Finite Fields Their Appl..

[30]  Lei Hu,et al.  The weight distribution of a family of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-ary cyclic c , 2013, Designs, Codes and Cryptography.

[31]  Hai Q. Dinh Structure of repeated-root constacyclic codes of length 3ps and their duals , 2013, Discret. Math..

[32]  Chengju Li,et al.  Weight Distributions of Two Classes of Cyclic Codes With Respect to Two Distinct Order Elements , 2013, IEEE Transactions on Information Theory.