윤곽선 정보를 이용한 동영상에서의 객체 추출

본 논문에서는 객체의 윤곽선 정보에 기반한 수정된 그래프컷(Graph-cut) 알고리즘을 이용하여 동영상에서 효율적으로 객체를 추출하는 방법을 제안한다. 이를 위해 먼저, 첫 프레임에서 자동 추출 알고리즘을 이용하거나 사용자와의 상호작용을 통해 영상에서 객체를 분리한다. 객체의 형태 정보를 상속시키기 위해 이전 프레임에서 추출된 객체 윤곽선의 움직임을 예측한다. 예측된 윤곽선을 기준으로 블록 단위 히스토그램 역투영(Block-based Histogram Back-projection) 알고리즘을 수행하여 다음 프레임의 각 픽셀에 대한 객체와 배경의 컬러 모델을 형성한다. 또한, 윤곽선을 중심으로 전체 영상에 대한 로그함수 기반의 거리 변환 지도(Distance Transform Map)를 생성하고 인접 픽셀간의 연결(link)의 확률을 결정한다. 생성된 컬러 모델과 거리 변환 지도를 이용하여 그래프를 형성하고 에너지를 정의하며, 이를 최소화하는 과정을 통해 객체를 추출한다. 다양한 영상들에 대한 실험 결과를 통해서 기존의 객체 추출 방법보다 제안하는 방법이 객체를 보다 정확하게 추출함을 확인할 수 있다.