Pantothenate biosynthesis is critical for chronic infection by the neurotropic parasite Toxoplasma gondii

[1]  J. Kloehn,et al.  Pantothenate biosynthesis is critical for chronic infection by the neurotropic parasite Toxoplasma gondii , 2021, bioRxiv.

[2]  E. Winzeler,et al.  Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention , 2021, Cell chemical biology.

[3]  S. Prigge,et al.  Dephospho‐CoA kinase, a nuclear‐encoded apicoplast protein, remains active and essential after Plasmodium falciparum apicoplast disruption , 2021, The EMBO journal.

[4]  C. Spry,et al.  A novel heteromeric pantothenate kinase complex in apicomplexan parasites , 2021, bioRxiv.

[5]  Aarti Krishnan Pantothenate biosynthesis is critical for the establishment of chronic infection by the neurotropic parasite Toxoplasma gondii , 2021 .

[6]  Rebecca D. Oppenheim,et al.  Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii , 2020, BMC Biology.

[7]  Anush Chiappino-Pepe,et al.  Functional and Computational Genomics Reveal Unprecedented Flexibility in Stage-Specific Toxoplasma Metabolism. , 2020, Cell host & microbe.

[8]  Michael J MacCoss,et al.  Skyline for Small Molecules: A Unifying Software Package for Quantitative Metabolomics. , 2020, Journal of proteome research.

[9]  L. Weiss,et al.  Toxoplasma gondii: Bradyzoite Differentiation In Vitro and In Vivo. , 2019, Methods in molecular biology.

[10]  M. Wadsworth,et al.  Identification of a Master Regulator of Differentiation in Toxoplasma , 2019, Cell.

[11]  J. Kloehn,et al.  Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage , 2019, The Journal of Biological Chemistry.

[12]  S. Patassini,et al.  Vitamin B5 (d-pantothenic acid) localizes in myelinated structures of the rat brain: Potential role for cerebral vitamin B5 stores in local myelin homeostasis , 2019, Biochemical and biophysical research communications.

[13]  M. Llinás,et al.  Antimalarial pantothenamide metabolites target acetyl–coenzyme A biosynthesis in Plasmodium falciparum , 2019, Science Translational Medicine.

[14]  L. Sibley,et al.  Evaluation of Current and Emerging Antimalarial Medicines for Inhibition of Toxoplasma gondii Growth in Vitro. , 2018, ACS infectious diseases.

[15]  Catherine Li,et al.  Tagging of Weakly Expressed Toxoplasma gondii Calcium‐Related Genes with High‐Affinity Tags , 2018, The Journal of eukaryotic microbiology.

[16]  B. Maco,et al.  Toxoplasma gondii TFP1 is an essential transporter family protein critical for microneme maturation and exocytosis , 2018, Molecular microbiology.

[17]  V. Tiranti,et al.  Acetyl-4′-phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency , 2017, Scientific Reports.

[18]  J. Rayner,et al.  Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes , 2017, Cell.

[19]  A. Aly,et al.  Genetic Characterization of Coenzyme A Biosynthesis Reveals Essential Distinctive Functions during Malaria Parasite Development in Blood and Mosquito , 2017, Front. Cell. Infect. Microbiol..

[20]  K. Brown,et al.  Plasma Membrane Association by N-Acylation Governs PKG Function in Toxoplasma gondii , 2017, mBio.

[21]  V. Nissapatorn Toxoplasma gondii and HIV: a never-ending story. , 2017, The lancet. HIV.

[22]  Quan Liu,et al.  Toxoplasma gondii Infection in Immunocompromised Patients: A Systematic Review and Meta-Analysis , 2017, Front. Microbiol..

[23]  M. Barrett,et al.  Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments , 2016, PLoS pathogens.

[24]  Choukri Ben Mamoun,et al.  Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito , 2016, Scientific Reports.

[25]  Tim Wang,et al.  A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes , 2016, Cell.

[26]  F. Frischknecht,et al.  A Putative Small Solute Transporter Is Responsible for the Secretion of G377 and TRAP-Containing Secretory Vesicles during Plasmodium Gamete Egress and Sporozoite Motility , 2016, PLoS pathogens.

[27]  H. Petković,et al.  Extracellular 4'-phosphopantetheine is a source for intracellular coenzyme A synthesis. , 2015, Nature chemical biology.

[28]  Jens Nielsen,et al.  Metabolic Needs and Capabilities of Toxoplasma gondii through Combined Computational and Experimental Analysis , 2015, PLoS Comput. Biol..

[29]  M. Okoniewski,et al.  Asexual expansion of Toxoplasma gondii merozoites is distinct from tachyzoites and entails expression of non-overlapping gene families to attach, invade, and replicate within feline enterocytes , 2015, BMC Genomics.

[30]  J. Snoep,et al.  Variation in pantothenate kinase type determines the pantothenamide mode of action and impacts on coenzyme A salvage biosynthesis , 2014, The FEBS journal.

[31]  T. Blundell,et al.  Pantothenic Acid Biosynthesis in the Parasite Toxoplasma gondii: a Target for Chemotherapy , 2014, Antimicrobial Agents and Chemotherapy.

[32]  Malcolm J. McConville,et al.  BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of Toxoplasma gondii and Plasmodium berghei , 2014, PLoS pathogens.

[33]  N. Westwood,et al.  Efficient Genome Engineering of Toxoplasma gondii Using CRISPR/Cas9 , 2014, PloS one.

[34]  Kevin M. Brown,et al.  Efficient Gene Disruption in Diverse Strains of Toxoplasma gondii Using CRISPR/CAS9 , 2014, mBio.

[35]  J. Flegr,et al.  Toxoplasmosis – A Global Threat. Correlation of Latent Toxoplasmosis with Specific Disease Burden in a Set of 88 Countries , 2014, PloS one.

[36]  W. Daher,et al.  Toxoplasma gondii myosin F, an essential motor for centrosomes positioning and apicoplast inheritance , 2013, The EMBO journal.

[37]  Choukri Ben Mamoun,et al.  Identification and Functional Analysis of the Primary Pantothenate Transporter, PfPAT, of the Human Malaria Parasite Plasmodium falciparum* , 2013, The Journal of Biological Chemistry.

[38]  Rebecca D. Oppenheim,et al.  The 2-methylcitrate cycle is implicated in the detoxification of propionate in Toxoplasma gondii , 2013, Molecular microbiology.

[39]  Andrew R. Jones,et al.  Library of Apicomplexan Metabolic Pathways: a manually curated database for metabolic pathways of apicomplexan parasites , 2012, Nucleic Acids Res..

[40]  Amsha Nahid,et al.  Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. , 2012, Cell host & microbe.

[41]  Michelle F Clasquin,et al.  LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine. , 2012, Current protocols in bioinformatics.

[42]  W. de Souza,et al.  The organization of the wall filaments and characterization of the matrix structures of Toxoplasma gondii cyst form , 2011, Cellular microbiology.

[43]  K. Tiedje,et al.  β-Alanine as a small molecule neurotransmitter , 2010, Neurochemistry International.

[44]  B. Foth,et al.  Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNAMet formylation in Apicomplexa , 2010, Molecular microbiology.

[45]  O. Kayser,et al.  Pantethine rescues a Drosophila model for pantothenate kinase–associated neurodegeneration , 2010, Proceedings of the National Academy of Sciences.

[46]  G. V. van Dooren,et al.  Genetic Evidence that an Endosymbiont-derived Endoplasmic Reticulum-associated Protein Degradation (ERAD) System Functions in Import of Apicoplast Proteins* , 2009, The Journal of Biological Chemistry.

[47]  M. Huynh,et al.  Tagging of Endogenous Genes in a Toxoplasma gondii Strain Lacking Ku80 , 2009, Eukaryotic Cell.

[48]  Marie-France Carlier,et al.  Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. , 2008, Cell host & microbe.

[49]  S. Müller,et al.  Vitamin and cofactor biosynthesis pathways in Plasmodium and other apicomplexan parasites. , 2007, Trends in parasitology.

[50]  T. Blundell,et al.  Pantothenate biosynthesis in higher plants. , 2005, Biochemical Society transactions.

[51]  T. Blundell,et al.  Organisation of the pantothenate (vitamin B5) biosynthesis pathway in higher plants. , 2004, The Plant journal : for cell and molecular biology.

[52]  Bing Chen,et al.  A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis , 2002, Nature Medicine.

[53]  D. Soldati,et al.  Toxoplasma gondii myosin A and its light chain: a fast, single‐headed, plus‐end‐directed motor , 2002, The EMBO journal.

[54]  H. Bujard,et al.  Modulation of myosin A expression by a newly established tetracycline repressor-based inducible system in Toxoplasma gondii. , 2001, Nucleic acids research.

[55]  T. Mann,et al.  Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. , 2001, Molecular and biochemical parasitology.

[56]  K. Kirk,et al.  H+-coupled Pantothenate Transport in the Intracellular Malaria Parasite* , 2001, The Journal of Biological Chemistry.

[57]  M. Rychlik Mass spectrometric studies of trimethylsilylpantothenic acid and related substances. , 2001, Journal of mass spectrometry : JMS.

[58]  C. Clayton,et al.  Toxoplasma gondii catalase: are there peroxisomes in toxoplasma? , 2000, Journal of cell science.

[59]  Kami Kim,et al.  The development and biology of bradyzoites of Toxoplasma gondii. , 2000, Frontiers in bioscience : a journal and virtual library.

[60]  J. Kalinowski,et al.  Expression of the Corynebacterium glutamicum panD Gene Encoding l-Aspartate-α-Decarboxylase Leads to Pantothenate Overproduction in Escherichia coli , 1999, Applied and Environmental Microbiology.

[61]  D. Roos,et al.  Insertional Tagging, Cloning, and Expression of the Toxoplasma gondii Hypoxanthine-Xanthine-Guanine Phosphoribosyltransferase Gene , 1996, The Journal of Biological Chemistry.

[62]  D. Roos,et al.  Insertional mutagenesis and marker rescue in a protozoan parasite: cloning of the uracil phosphoribosyltransferase locus from Toxoplasma gondii. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[63]  L. Weiss,et al.  A Cell Culture System for Study of the Development of Toxoplasma gondii Bradyzoites , 1995, The Journal of eukaryotic microbiology.

[64]  J. Boothroyd,et al.  A selector of transcription initiation in the protozoan parasite Toxoplasma gondii , 1995, Molecular and cellular biology.

[65]  S. Jackowski,et al.  Kinetics and regulation of pantothenate kinase from Escherichia coli. , 1994, The Journal of biological chemistry.

[66]  K. Joiner,et al.  The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[67]  D. Roos,et al.  Stable molecular transformation of Toxoplasma gondii: a selectable dihydrofolate reductase-thymidylate synthase marker based on drug-resistance mutations in malaria. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Dubremetz,et al.  Toxoplasma gondii: kinetics of bradyzoite-tachyzoite interconversion in vitro. , 1993, Experimental parasitology.

[69]  J. Jensen,et al.  Nutritional requirements of Plasmodium falciparum in culture. I. Exogenously supplied dialyzable components necessary for continuous growth. , 1985, The Journal of protozoology.

[70]  M. R. Dische,et al.  Congenital toxoplasmosis. , 1981, Perspectives in pediatric pathology.

[71]  F. V. Defeudis,et al.  Contents of beta-alanine and gamma-aminobutyric acid in regions of rat CNS. , 1977, Experimental brain research.

[72]  E. Snell,et al.  Ketopantoate hydroxymethyltransferase. II. Physical, catalytic, and regulatory properties. , 1976, The Journal of biological chemistry.

[73]  Gene M. Brown,et al.  Biosynthesis of Pantothenic Acid and Coenzyme A , 1970 .

[74]  A. Meister,et al.  Enzymatic synthesis of carnosine and related beta-alanyl and gamma-aminobutyryl peptides. , 1959, The Journal of biological chemistry.