Simple Scenarios of Onset of Chaos in Three-Dimensional Maps

We give a qualitative description of two main routes to chaos in three-dimensional maps. We discuss Shilnikov scenario of transition to spiral chaos and a scenario of transition to discrete Lorenz-like and figure-eight strange attractors. The theory is illustrated by numerical analysis of three-dimensional Henon-like maps and Poincare maps in models of nonholonomic mechanics.

[1]  G. Lebed TRIGONOMETRIC SERIES WITH COEFFICIENTS SATISFYING CERTAIN CONDITIONS , 1967 .

[2]  Alain Arneodo,et al.  Possible new strange attractors with spiral structure , 1981 .

[3]  Dmitry Turaev,et al.  An example of a wild strange attractor , 1998 .

[4]  Valentin Afraimovich,et al.  Origin and structure of the Lorenz attractor , 1977 .

[5]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[6]  Dmitry Turaev,et al.  Three-Dimensional HÉnon-like Maps and Wild Lorenz-like attractors , 2005, Int. J. Bifurc. Chaos.

[7]  George Huitema,et al.  Toward a quasi-periodic bifurcation theory , 1990 .

[8]  V. V. Bykov,et al.  The bifurcations of separatrix contours and chaos , 1993 .

[9]  A. Kazakov,et al.  Richness of chaotic dynamics in nonholonomic models of a celtic stone , 2013, Regular and Chaotic Dynamics.

[10]  V. S. Gonchenko,et al.  Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps , 2012, 1201.5357.

[11]  R. Bamon,et al.  Wild Lorenz like attractors , 2005 .

[12]  Leon O. Chua,et al.  ON PERIODIC ORBITS AND HOMOCLINIC BIFURCATIONS IN CHUA’S CIRCUIT WITH A SMOOTH NONLINEARITY , 1993 .

[13]  R. Ures On the approximation of Hénon-like attractors by homoclinic tangencies , 1995, Ergodic Theory and Dynamical Systems.

[14]  D. Turaev,et al.  Examples of Lorenz-like Attractors in Hénon-like Maps , 2013 .

[15]  A. Borisov,et al.  Strange attractors in rattleback dynamics , 2003 .

[16]  L. Chua,et al.  Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .

[17]  L. Shilnikov,et al.  NORMAL FORMS AND LORENZ ATTRACTORS , 1993 .

[18]  Vladimir N. Belykh,et al.  Hyperbolic Plykin Attractor Can Exist in Neuron Models , 2005, Int. J. Bifurc. Chaos.

[19]  L. Shilnikov,et al.  On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I , 2008 .

[20]  Dmitry Turaev,et al.  ON DIMENSION OF NON-LOCAL BIFURCATIONAL PROBLEMS , 1996 .

[21]  A. Kazakov Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane , 2013 .

[22]  L. A. Belyakov A case of the generation of a periodic motion with homoclinic curves , 1974 .

[23]  Nonnormally hyperbolic invariant curves for maps in R3 and doubling bifurcation , 1989 .

[24]  Leonid P Shilnikov,et al.  ON SYSTEMS WITH A SADDLE-FOCUS HOMOCLINIC CURVE , 1987 .

[25]  Andrey Shilnikov,et al.  Kneadings, Symbolic Dynamics and Painting Lorenz Chaos , 2012, Int. J. Bifurc. Chaos.

[26]  Carles Simó,et al.  Attractors in a Sbil'nikov-Hopf scenario and a related one-dimensional map , 1993 .

[27]  Andrey Shilnikov,et al.  On bifurcations of the Lorenz attractor in the Shimizu-Morioka model , 1993 .

[28]  Marcelo Viana,et al.  Abundance of strange attractors , 1993 .

[29]  Dmitry Turaev,et al.  On the effect of invisibility of stable periodic orbits at homoclinic bifurcations , 2012 .

[30]  Alain Arneodo,et al.  THE DYNAMICS OF TRIPLE CONVECTION , 1985 .

[31]  J. Yorke,et al.  A transition from hopf bifurcation to chaos: Computer experiments with maps on R2 , 1978 .

[32]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[33]  R. F. Williams,et al.  The structure of Lorenz attractors , 1979 .

[34]  A. Borisov,et al.  Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback , 2012 .

[35]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[36]  S. Newhouse,et al.  Diffeomorphisms with infinitely many sinks , 1974 .

[37]  L. Shilnikov,et al.  Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits. , 1996, Chaos.

[38]  G. B. Huitema Unfoldings of quasi-periodic tori , 1988 .

[39]  V. Afraimovich,et al.  The ring principle in problems of interaction between two self-oscillating systems: PMM vol. 41, n≗4, 1977, pp. 618–627 , 1977 .

[40]  R. Vitolo Bifurcations of attractors in 3D diffeomorphisms : a study in experimental mathematics , 2003 .

[41]  D. Aronson,et al.  Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study , 1982 .

[42]  Andrey Shilnikov,et al.  ON THE NONSYMMETRICAL LORENZ MODEL , 1991 .

[43]  V. I. Arnol'd,et al.  Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields , 1977 .

[44]  John Guckenheimer,et al.  A Strange, Strange Attractor , 1976 .