Multiobjective fuzzy random linear programming using E-model and possibility measure

The authors deal with multiobjective linear programming problems with fuzzy random variable coefficients. Since the problem is ill-defined due to both fuzziness and randomness, we propose a decision making model based on E-model, which is a useful model in stochastic programming, and a possibility measure. First, we show that the formulated problem is reduced to a multiobjective linear fractional programming problem. After defining a Pareto optimal solution based on the expected value of possibility measure, we construct a solution algorithm for solving a minimax problem. Further, we consider interactive decision making using reference points and give numerical examples.

[1]  K. Hirota Concepts of probabilistic sets , 1981 .

[2]  Jean-Pierre Crouzeix,et al.  Convergence of a Dinkelbach-type algorithm in generalized fractional programming , 1987, Z. Oper. Research.

[3]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .

[4]  Masatoshi Sakawa,et al.  Interactive Multiobjective Decisionmaking for Large-Scale Systems and Its Application to Environmental Systems , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Masatoshi Sakawa,et al.  Interactive Computer Programs for Fuzzy Linear Programming with Multiple Objectives , 1983, Int. J. Man Mach. Stud..

[6]  Masahiro Inuiguchi,et al.  Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem , 2000, Fuzzy Sets Syst..

[7]  M. Sakawa,et al.  Interactive Fuzzy Decision-Making for Multiobjective Linear Fractional Programming Problems , 1983 .

[8]  S. Vajda,et al.  Probabilistic Programming , 1972 .

[9]  Wang Guangyuan,et al.  Linear programming with fuzzy random variable coefficients , 1993 .

[10]  廣田 薫,et al.  Probabilistic sets : fuzzy and stochastic approach to decision, control and recognition processes , 1986 .

[11]  H. Ishii,et al.  Chance constrained bottleneck spanning tree problem with fuzzy random edge costs , 2000 .

[12]  María Angeles Gil,et al.  An Extension of Fubini's Theorem for Fuzzy Random Variables , 1999, Inf. Sci..

[13]  Madan M. Gupta,et al.  On fuzzy stochastic optimization , 1996, Fuzzy Sets Syst..

[14]  M. Sakawa,et al.  Interactive decision making for multiobjective nonlinear programming problems with fuzzy parameters , 1989 .

[15]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[16]  H. Ishii,et al.  LINEAR PROGRAMMING PROBLEM WITH FUZZY RANDOM CONSTRAINT , 2000 .

[17]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[18]  L. Zadeh Probability measures of Fuzzy events , 1968 .

[19]  M. Gil,et al.  Constructive definitions of fuzzy random variables , 1997 .

[20]  M. Puri,et al.  Fuzzy Random Variables , 1986 .