Parametric wave field coding for precomputed sound propagation

The acoustic wave field in a complex scene is a chaotic 7D function of time and the positions of source and listener, making it difficult to compress and interpolate. This hampers precomputed approaches which tabulate impulse responses (IRs) to allow immersive, real-time sound propagation in static scenes. We code the field of time-varying IRs in terms of a few perceptual parameters derived from the IR's energy decay. The resulting parameter fields are spatially smooth and compressed using a lossless scheme similar to PNG. We show that this encoding removes two of the seven dimensions, making it possible to handle large scenes such as entire game maps within 100MB of memory. Run-time decoding is fast, taking 100μs per source. We introduce an efficient and scalable method for convolutionally rendering acoustic parameters that generates artifact-free audio even for fast motion and sudden changes in reverberance. We demonstrate convincing spatially-varying effects in complex scenes including occlusion/obstruction and reverberation, in our system integrated with Unreal Engine 3™.

[1]  Tapio Lokki,et al.  Rays or Waves? Understanding the Strengths and Weaknesses of Computational Room Acoustics Modeling Techniques , 2010 .

[2]  T. Lokki,et al.  Room acoustics modeling with acoustics radiance transfer , 2010 .

[3]  D. Murphy,et al.  Acoustic Modeling Using the Digital Waveguide Mesh , 2007, IEEE Signal Processing Magazine.

[4]  Thomas Funkhouser,et al.  Advances in edge-diffraction modeling for virtual-acoustic simulations , 2009 .

[5]  Claus Lynge Christensen,et al.  The use of colors , animations and auralizations in room acoustics , 2013 .

[6]  Andrew J. Kolarik,et al.  Perceiving auditory distance using level and direct-to-reverberant ratio cues , 2011 .

[7]  Donald P. Greenberg,et al.  Computer graphics visualization for acoustic simulation , 1989, SIGGRAPH '89.

[8]  Ka,et al.  AN IMPROVED ENERGETIC APPROACH TO DIFFRACTION BASED ON THE UNCERTAINTY PRINCIPLE , 2007 .

[9]  Vesa Välimäki,et al.  Fifty Years of Artificial Reverberation , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[10]  Jernej Barbic,et al.  Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources , 2006, ACM Trans. Graph..

[11]  H. Sabine Room Acoustics , 1953, The SAGE Encyclopedia of Human Communication Sciences and Disorders.

[12]  Hideki Tachibana,et al.  Calculation of impulse responses and acoustic parameters in a hall by the finite-difference time-domain method , 2008 .

[13]  Dinesh K. Pai,et al.  Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources , 2006, SIGGRAPH 2006.

[14]  Lauri Savioja,et al.  REAL-TIME 3D FINITE-DIFFERENCE TIME-DOMAIN SIMULATION OF LOW- AND MID-FREQUENCY ROOM ACOUSTICS , 2010 .

[15]  Damian T. Murphy,et al.  Room Impulse Response Synthesis and Validation Using a Hybrid Acoustic Model , 2013, IEEE Transactions on Audio, Speech, and Language Processing.

[16]  Tapio Takala,et al.  Sound rendering , 1992, SIGGRAPH.

[17]  U. Svensson,et al.  An analytic secondary source model of edge diffraction impulse responses , 1999 .

[18]  Ravish Mehra,et al.  Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes , 2010, SIGGRAPH 2010.

[19]  Dinesh Manocha,et al.  RESound: interactive sound rendering for dynamic virtual environments , 2009, ACM Multimedia.

[20]  Ming C. Lin,et al.  Efficient and Accurate Sound Propagation Using Adaptive Rectangular Decomposition , 2009, IEEE Transactions on Visualization and Computer Graphics.

[21]  Ming C. Lin,et al.  Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes , 2010, ACM Trans. Graph..

[22]  Samuli Laine,et al.  Accelerated beam tracing algorithm , 2009 .

[23]  Jont B. Allen,et al.  Image method for efficiently simulating small‐room acoustics , 1976 .

[24]  Dirk Schröder,et al.  Physically based real-time auralization of interactive virtual environments , 2011 .

[25]  Thomas Funkhouser,et al.  A beam tracing method for interactive architectural acoustics. , 2004, The Journal of the Acoustical Society of America.

[26]  T. Lokki,et al.  Geometry reduction in room acoustics modeling , 2008 .

[27]  Dinesh Manocha,et al.  AD-Frustum: Adaptive Frustum Tracing for Interactive Sound Propagation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[28]  Juha Merimaa,et al.  Spatial Impulse Response Rendering I: Analysis and Synthesis , 2005 .

[29]  Tapio Lokki,et al.  The room acoustic rendering equation. , 2007, The Journal of the Acoustical Society of America.

[30]  T. Ajdler,et al.  The Plenacoustic Function and Its Sampling , 2006, IEEE Transactions on Signal Processing.

[31]  Nicolas Tsingos,et al.  Precomputing Geometry-Based Reverberation Effects for Games , 2009 .

[32]  Rahul Narain,et al.  Efficient and accurate sound propagation using adaptive rectangular decomposition. , 2009, IEEE transactions on visualization and computer graphics.

[33]  Tapio Takala,et al.  Simulation of Room Acoustics with a 3-D Finite Difference Mesh , 1994, ICMC.

[34]  Maarten van Walstijn,et al.  Room Acoustics Simulation Using 3-D Compact Explicit FDTD Schemes , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[35]  Dinesh Manocha,et al.  Wave-ray coupling for interactive sound propagation in large complex scenes , 2013, ACM Trans. Graph..

[36]  Dinesh Manocha,et al.  An efficient GPU-based time domain solver for the acoustic wave equation , 2012 .

[37]  Anders Gade,et al.  Acoustics in Halls for Speech and Music , 2014 .

[38]  Tapio Lokki,et al.  Frequency domain acoustic radiance transfer for real-time auralization , 2009 .

[39]  Dinesh Manocha,et al.  Wave-based sound propagation in large open scenes using an equivalent source formulation , 2013, TOGS.