Nonlinear dynamics of thin film polyvinylidene fluoride cantilevers

Design and development of electro-active polymeric devices for sensing and actuation requires accurate characterization of its nonlinear dynamic behavior and performance characteristics. Thin film cantilevers are being applied for numerous sensor and actuator applications. A nonlinear model of a piezoelectric thin plate cantilever is developed in this work using a two-mode approximation developed by Galerkin's method. This reduced order model is then studied using perturbation method for the nonlinear dynamic response due to a harmonic excitation. The results obtained demonstrate the nonlinear nature of the dynamic behavior of thin plates made of polymer polyvinylidene fluoride. The exhibited nonlinear behavior includes parameter dependent amplitude modulation, nonlinear jump and nonlinear dependence on excitation frequency and excitation amplitude. This study is a step forward in understanding the associated dynamics so as to utilize these geometries in various transducer applications.