Preconditioned Eigensolvers - an Oxymoron?

A short survey of some results on preconditioned iterative methods for symmetric eigenvalue problems is presented. The survey is in no way complete and reflects author''s personal interests and biases, with emphasis on author''s own contributions. The author tries to mention the majority of important theoretical results and ideas from the Soviet literature on the subject, adding references from the other side of the Iron Curtain usually just to preserve the integrity of the topic. An attempt is made to introduce a systematic classification of preconditioned eigensolvers, separating the choice of a preconditioner from the choice of an iterative method. A formal definition of a preconditioned eigensolver is given. Recent developments in the area are mainly ignored, in particular, on Davidson''s method. Domain decomposition methods for eigenproblems are included in the framework of preconditioned eigensolvers. The paper has more the style of a popular presentation, and can serve as an introduction into the area.

[1]  V. A. Shishov A method for partitioning a high order matrix into blocks in order to find its eigenvalues , 1962 .

[2]  B. Tabarrok,et al.  ON KRON'S EIGENVALUE PROCEDURE AND RELATED METHODS OF FREQUENCY ANALYSIS , 1968 .

[3]  W. Petryshyn On the eigenvalue problem Tu-λSu=0 with unbounded and nonsymetric operators T and S , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  Axel Ruhe methods for the eigenvalue problem with large sparse matrices , 1974 .

[5]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[6]  Axel Rune Iterative eigenvalue algorithms based on convergent splittings , 1975 .

[7]  S. McCormick,et al.  Simultaneous iteration for the matrix eigenvalue problem , 1977 .

[8]  D. Szyld,et al.  Applications of conjugate gradient type methods to eigenvalue calcuations , 1979 .

[9]  E. D'yakonov,et al.  Minimization of the computational labor in determining the first eigenvalues of differential operators , 1980 .

[10]  D. Longsine,et al.  Simultaneous rayleigh-quotient minimization methods for Ax=λBx , 1980 .

[11]  D. Scott Solving Sparse Symmetric Generalized Eigenvalue Problems without Factorization , 1981 .

[12]  John G. Lewis,et al.  Sparse matrix test problems , 1982, SGNM.

[13]  K. Hirao,et al.  A generalization of the Davidson's method to large nonsymmetric eigenvalue problems , 1982 .

[14]  Ernest R. Davidson,et al.  Matrix Eigenvector Methods , 1983 .

[15]  E. D'yakonov Iteration methods in eigenvalue problems , 1983 .

[16]  G. Diercksen,et al.  Methods in Computational Molecular Physics , 1983 .

[17]  Edward J. Haug,et al.  Problems and methods of optimal structural design , 1983 .

[18]  V. Prikazchikov,et al.  Iterative method for solving stability and oscillation problems for plates and shells , 1984 .

[19]  N. Kosugi Modification of the Liu-Davidson method for obtaining one or simultaneously several eigensolutions of a large real-symmetric matrix , 1984 .

[20]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[21]  R. Craig A review of time-domain and frequency-domain component mode synthesis method , 1985 .

[22]  R. Morgan,et al.  Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices , 1986 .

[23]  Y. Kuznetsov,et al.  RF cavity computations by the domain decomposition and fictitious components methods , 1987 .

[24]  A. Knyazev Convergence rate estimates for iterative methods for a mesh symmetrie eigenvalue problem , 1987 .

[25]  Arnd Meyer,et al.  Modern algorithms for large sparse eigenvalue problems , 1987 .

[26]  O. Axelsson,et al.  On a class of preconditioned iterative methods on parallel computers. , 1989 .

[27]  A. Knyazev,et al.  Preconditioned iterative methods in subspace for solving linear systems with indefinite coefficient matrices and eigenvalue problems , 1989 .

[28]  F. Bourquin Analysis and comparison of several component mode synthesis methods on one-dimensional domains , 1990 .

[29]  A. Knyazev,et al.  The rate of convergence of the method of steepest descent in a Euclidean norm , 1990 .

[30]  R. Morgan Davidson's method and preconditioning for generalized eigenvalue problems , 1990 .

[31]  J. Luo Solving eigenvalue problems by implicit decomposition , 1991 .

[32]  E. Suetomi,et al.  Conjugate gradient like methods and their application to eigenvalue problems for neutron diffusion equation , 1991 .

[33]  A. Knyazev A Preconditioned Conjugate Gradient Method for Eigenvalue Problems and its Implementation in a Subspace , 1991 .

[34]  A. Knyazev,et al.  On exact estimates of the convergence rate of the steepest ascent method in the symmetric eigenvalue problem , 1991 .

[35]  F. Bourquin,et al.  Component mode synthesis and eigenvalues of second order operators : discretization and algorithm , 1992 .

[36]  A. Knyazev,et al.  On an iterative method for finding lovver eigenvalues , 1992 .

[37]  G. Gambolati,et al.  An orthogonal accelerated deflation technique for large symmetric eigenproblems , 1992 .

[38]  M. Petyt Large order structural eigenanalysis techniques: 1989, by N. S. Sehmi, Chichester: John Wiley & Sons Limited. Price £39·95; pp. 223. ISBN 0-745-804-802 , 1992 .

[39]  Ronald B. Morgan,et al.  Preconditioning the Lanczos Algorithm for Sparse Symmetric Eigenvalue Problems , 1993, SIAM J. Sci. Comput..

[40]  M. Sadkane Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems , 1993 .

[41]  A. Edelman,et al.  Curvature in Conjugate Gradient Eigenvalue Computation with Applications to Materials and Chemistry , 1994 .

[42]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[43]  Bernard Philippe,et al.  The Davidson Method , 1994, SIAM J. Sci. Comput..

[44]  H. A. V. D. Vorsty University Utrecht a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems , 1994 .

[45]  A. Knyazev,et al.  Preconditioned gradient-type iterative methods in a subspace for partial generalized symmetric eigenvalue problems , 1994 .

[46]  E. D'yakonov Optimization in Solving Elliptic Problems , 1995 .

[47]  Giuseppe Gambolati,et al.  Nested Iterations for Symmetric Eigenproblems , 1995, SIAM J. Sci. Comput..

[48]  Tien-Yien Li,et al.  Parallel homotopy algorithm for symmetric large sparse eigenproblems , 1995 .

[49]  F. Bourquin A domain decomposition method for the eigenvalue problem in elastic multistructures , 1995 .

[50]  Y. Nechepurenko The singular-function method for computing the eigenvalues of polynomial matrices , 1995 .

[51]  Andrew V. Knyazev,et al.  A subspace preconditioning algorithm for eigenvector/eigenvalue computation , 1995, Adv. Comput. Math..

[52]  H. V. D. Vorst,et al.  Subspace Iteration for Eigenproblems , 1996 .

[53]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[54]  Y. Feng,et al.  CONJUGATE GRADIENT METHODS FOR SOLVING THE SMALLEST EIGENPAIR OF LARGE SYMMETRIC EIGENVALUE PROBLEMS , 1996 .

[55]  Andrew Knyazev,et al.  New estimates for Ritz vectors , 1997, Math. Comput..

[56]  Luca Bergamaschi,et al.  Asymptotic Convergence of Conjugate Gradient Methods for the Partial Symmetric Eigenproblem , 1997, Numer. Linear Algebra Appl..

[57]  G. Gambolati,et al.  Asymptotic Convergence of Conjugate Gradient Methods for the Partial Symmetric Eigenproblem , 1997 .

[58]  H. Keller,et al.  Homotopy Method for the Large, Sparse, Real Nonsymmetric Eigenvalue Problem , 1997, SIAM J. Matrix Anal. Appl..

[59]  S. McCormick,et al.  Multigrid Methods for Nearly Singular Linear Equations and Eigenvalue Problems , 1997 .

[60]  Gene H. Golub,et al.  On the Homotopy Method for Perturbed Symmetric Generalized Eigenvalue Problems , 1998, SIAM J. Sci. Comput..

[61]  Axel Ruhe,et al.  Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..

[62]  S. Maliassov On the Schwarz alternating method for eigenvalue problems , 1998 .

[63]  C. Farhat,et al.  Domain Decomposition Methods 10 , 1998 .

[64]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[65]  S. Lui Homotopy method for the numerical solution of the eigenvalue problem of self-adjoint partial differential operators , .