On control laws for discrete linear repetitive processes with dynamic boundary conditions

Repetitive processes are characterized by a series of sweeps, termed passes, through a set of dynamics defined over a finite duration known as the pass length. On each pass an output, termed the pass profile, is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile. This can lead to oscillations in the sequence of pass profiles produced which increase in amplitude in the pass-to-pass direction and cannot be controlled by application of standard control laws. Here we give new results on the design of physically based control laws for so-called discrete linear repetitive processes which arise in applications areas such as iterative learning control.