Moringa oleifera (Drum Stick Vegetable Fibre) Based Nanocomposites with Natural Rubber: Preparation and Characterizations

[1]  Mohamed A. Abdelwahab,et al.  Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: Improved barrier and mechanical properties , 2013 .

[2]  J. Catchmark,et al.  Quantification of cellulose nanowhiskers sulfate esterification levels. , 2013, Carbohydrate polymers.

[3]  A. Ragauskas,et al.  Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. , 2013, Carbohydrate polymers.

[4]  H. Rao,et al.  Assessment of Glass/Drumstick Fruit Fiber (Moringa oleifera) Reinforced Epoxy Hybrid Composites , 2012 .

[5]  Sabu Thomas,et al.  Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal properties , 2012 .

[6]  A. Melesse Comparative assessment on chemical compositions and feeding values of leaves of Moringa stenopetala and Moringa oleifera using in vitro gas production method , 2011 .

[7]  G. Pulla,et al.  Fabrication and performance of natural fibers: Sansevieria cylindrica, waste silk, jute and drumstick vegetable fibres (Moringa Oleifera) reinforced with rubber/polyester composites , 2011 .

[8]  A. Dufresne,et al.  Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites , 2010 .

[9]  Sabu Thomas,et al.  Effect of chemical modification on properties of hybrid fiber biocomposites , 2008 .

[10]  N. Yan,et al.  Predicting the tensile strength of natural fibre reinforced thermoplastics , 2007 .

[11]  Enyong Ding,et al.  Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups , 2007 .

[12]  심철호 분쇄공정변수가 Microcrystalline cellulose의 비표면적에 미치는 영향 , 2006 .

[13]  Kaoru Tsujii,et al.  Cooking cellulose in hot and compressed water. , 2006, Chemical communications.

[14]  Kristiina Oksman,et al.  Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis , 2006 .

[15]  C. Baillie Green composites : polymer composites and the environment , 2005 .

[16]  F. Carrillo,et al.  Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres , 2004 .

[17]  M. Roman,et al.  Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. , 2004, Biomacromolecules.

[18]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[19]  Takeshi Okano,et al.  Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose , 1998 .

[20]  K. Becker,et al.  Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree , 1997, The Journal of Agricultural Science.

[21]  V. G. Geethamma,et al.  Short coir fiber‐reinforced natural rubber composites: Effects of fiber length, orientation, and alkali treatment , 1995 .

[22]  Sabu Thomas,et al.  Stress relaxation in short sisal‐fiber‐reinforced natural rubber composites , 1994 .

[23]  B. Stenberg,et al.  Effects of plasma treatment on mechanical properties of rubber/cellulose fibre composites , 1994 .

[24]  Rakesh Kumar,et al.  Mechanical behaviour of bamboo and bamboo composite , 1992 .

[25]  O. Battista,et al.  Colloidal macromolecular phenomena. Part II. Novel microcrystals of polymers , 1967 .