Two-dimensional interaction of oxidic corium with concretes: The VULCANO VB test series

Abstract Three two-dimensional Molten Core–Concrete Interaction tests have been conducted in the VULCANO facility with prototypic oxidic corium. The major finding is that for the two tests with silica-rich concrete, the ablation was anisotropic while it was isotropic for limestone-rich concrete. The cause of this behaviour is not yet well understood. Post Test Examinations have indicated that for the silica-rich concrete, the corium melt mixed specifically with mortar, while, for limestone-rich concretes, the analysed samples were in accordance with a corium–concrete mixing. The experimental results are described and compared to numerical codes. Separate Effect Tests with Artificial Concretes and prototypic corium are proposed to understand the phenomena governing the ablation geometry.

[1]  Kirill Frolov Diffusion chimique à l'état liquide dans des bains silicatés : application aux accidents graves de réacteurs nucléaires , 2004 .

[2]  Manfred Fischer,et al.  The severe accident mitigation concept and the design measures for core melt retention of the European Pressurized Reactor (EPR) , 2004 .

[3]  H. Alsmeyer,et al.  The COMET-L3 experiment on long-term melt–concrete interaction and cooling by surface flooding , 2007 .

[4]  R. C. Kerr Melting driven by vigorous compositional convection , 1994, Journal of Fluid Mechanics.

[5]  Jong-hwan Kim,et al.  Thermo-physical properties and transient heat transfer of concrete at elevated temperatures , 2002 .

[6]  B. Georgali,et al.  Microstructure of fire-damaged concrete. A case study , 2005 .

[7]  A. Roubaud,et al.  PLASMA TRANSFERRED ARC ROTARY FURNACE FOR "CORIUM" MELTING , 1997 .

[8]  E. R. Copus,et al.  Core-concrete interactions using molten steel with zirconium on a basaltic basemat: The SURC-4 experiment , 1989 .

[9]  Jean-Marie Seiler,et al.  MATERIAL EFFECTS ON MULTIPHASE PHENOMENA IN LATE PHASES OF SEVERE ACCIDENTS OF NUCLEAR REACTORS , 2000 .

[10]  J. J. Foit Modeling oxidic molten core-concrete interaction in WECHSL , 1997 .

[11]  H. A. Wrledt The O-Si (Oxygen-Silicon) system , 1990 .

[12]  Christophe Journeau,et al.  Convection heat transfer anisotropy in a bubbling viscous pool-Application to molten core-concrete interaction , 2009 .

[13]  A. Miassoedov,et al.  The COMET-L2 experiment on long-term MCCl with steel melt , 2006 .

[14]  M. Barrachin,et al.  Improvement of the European thermodynamic database NUCLEA , 2010 .

[15]  Christophe Journeau,et al.  Physico-chemical analyses and solidification path reconstruction of multi-component oxidic spread melts , 2001 .

[16]  G. Azarian,et al.  EPR Severe Accident Threats and Mitigation , 2004 .

[17]  F. Sudreau,et al.  Thermal, physico-chemical and rheological boundary layers in multi-component oxidic melt spreads , 1999 .

[18]  Pascal Richet,et al.  Viscosity of liquid silica, silicates and alumino-silicates , 1982 .

[19]  Christophe Journeau,et al.  Validation of the COMET Bottom-Flooding Core-Catcher with Prototypic Corium , 2006 .

[20]  J. Mungall Empirical models relating viscosity and tracer diffusion in magmatic silicate melts , 2002 .

[21]  D. A. Powers,et al.  Core-concrete interactions with overlying water pools. The WETCOR-1 test , 1993 .

[22]  P. Chaud,et al.  NUCLEA “propriétés thermodynamiques et équilibres de phases dans les systèmes d'intérêt nucléaire” , 2004 .

[23]  S. Basu,et al.  The results of the CCI-3 reactor material experiment investigating 2-D core-concrete interaction and debris coolability with a silliceous concrete crucible. , 2006 .

[24]  Christophe Journeau,et al.  A European joint work plan on molten core concrete interaction , 2009 .

[25]  H. Baker,et al.  Alloy phase diagrams , 1992 .

[26]  Christophe Journeau,et al.  Viscosity models for corium melts , 2001 .

[27]  Marta Castellote,et al.  Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction , 2004 .

[28]  D. R. Gardner,et al.  CORCON-MOD3: An integrated computer model for analysis of molten core-concrete interactions. User`s manual , 1993 .

[29]  R. C. Kerr Dissolving driven by vigorous compositional convection , 1994, Journal of Fluid Mechanics.

[30]  Yoshihiro Kojima,et al.  A study on concrete degradation during molten core/concrete interactions , 2006 .

[31]  C. Brayer,et al.  Ex-vessel corium spreading: results from the VULCANO spreading tests , 2003 .

[32]  S. Basu,et al.  Results of reactor material experiments investigating 2-D core-concrete interaction and debris coolability. , 2004 .

[33]  G. Khoury Effect of fire on concrete and concrete structures , 2000 .

[34]  Tahar Loulou,et al.  Estimation of thermal contact resistance during the first stages of metal solidification process : I-experiment principle and modelisation , 1999 .