Neurobiologie der chronisch schizophrenen Erkrankungen: Progressive Enzephalopathie oder Störung der Neuroplastizität?

The Neurobiology of Schizophrenia: Progressive Encephalopathy or Disturbed Neuroplasticity? The knowledge of the molecular etiology and neurobiological underpinnings of the progressive course of schizophrenia with progredient volume reductions in key brain regions is as yet only moderate. Of particular interest is the question whether besides a neurodevelopmental disturbance a progressive encephalopathy with neurodegeneration contributes to the chronic course of the disease. On the cellular level, post-mortem studies showed no reduction of the number of neurons or astro-

[1]  T. Rangaswamy,et al.  Course and outcome of schizophrenia , 2012, International review of psychiatry.

[2]  Peter Falkai,et al.  Hippocampal plasticity in response to exercise in schizophrenia. , 2010, Archives of general psychiatry.

[3]  R. Malinow,et al.  NMDA Receptor Phosphorylation at a Site Affected in Schizophrenia Controls Synaptic and Behavioral Plasticity , 2009, The Journal of Neuroscience.

[4]  M. Rietschel,et al.  Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia , 2009, European Archives of Psychiatry and Clinical Neuroscience.

[5]  T. Schneider-Axmann,et al.  Stereologic investigation of the posterior part of the hippocampus in schizophrenia , 2009, Acta Neuropathologica.

[6]  Wagner F. Gattaz,et al.  Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia , 2009, European Archives of Psychiatry and Clinical Neuroscience.

[7]  Steven R. Head,et al.  Molecular profiles of schizophrenia in the CNS at different stages of illness , 2008, Brain Research.

[8]  F. Wolf,et al.  Erythropoietin enhances hippocampal long-term potentiation and memory , 2008, BMC Biology.

[9]  Emmanuel Stip,et al.  Inflammatory Cytokine Alterations in Schizophrenia: A Systematic Quantitative Review , 2008, Biological Psychiatry.

[10]  Allan R. Sampson,et al.  Effect of Chronic Antipsychotic Exposure on Astrocyte and Oligodendrocyte Numbers in Macaque Monkeys , 2008, Biological Psychiatry.

[11]  Anna Rotarska-Jagiela,et al.  The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions , 2008, NeuroImage.

[12]  R. Vakkalanka,et al.  Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia , 2008, Schizophrenia Research.

[13]  N. Uranova,et al.  Deficit of pericapillary oligodendrocytes in the prefrontal cortex in schizophrenia , 2008, The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry.

[14]  G. Abecasis,et al.  Nogo Receptor 1 (RTN4R) as a Candidate Gene for Schizophrenia: Analysis Using Human and Mouse Genetic Approaches , 2007, PloS one.

[15]  Pat Levitt,et al.  Molecular Evidence for Increased Expression of Genes Related to Immune and Chaperone Function in the Prefrontal Cortex in Schizophrenia , 2007, Biological Psychiatry.

[16]  Stella Dracheva,et al.  Variations in oligodendrocyte-related gene expression across multiple cortical regions: implications for the pathophysiology of schizophrenia. , 2007, The international journal of neuropsychopharmacology.

[17]  Georg Winterer,et al.  Disturbed structural connectivity in schizophrenia primary factor in pathology or epiphenomenon? , 2007, Schizophrenia bulletin.

[18]  G. Feng,et al.  No association between the genetic polymorphisms in the RTN4R gene and schizophrenia in the Chinese population , 2007, Journal of Neural Transmission.

[19]  B. Bogerts,et al.  Evidence for a wide extra-astrocytic distribution of S100B in human brain , 2007, BMC Neuroscience.

[20]  G. Novak,et al.  Nogo A, B and C expression in schizophrenia, depression and bipolar frontal cortex, and correlation of Nogo expression with CAA/TATC polymorphism in 3′-UTR , 2006, Brain Research.

[21]  K. Lesch,et al.  Neural stem cell proliferation is decreased in schizophrenia, but not in depression , 2006, Molecular Psychiatry.

[22]  M. Owen,et al.  Genetics of schizophrenia , 2005, Current Opinion in Behavioral Sciences.

[23]  M. Millan N-Methyl-d-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives , 2005, Psychopharmacology.

[24]  A. Phillips,et al.  Hippocampal complexin proteins and cognitive dysfunction in schizophrenia. , 2005, Archives of general psychiatry.

[25]  Paul J. Harrison,et al.  Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons , 2005, Schizophrenia Research.

[26]  Guido Gerig,et al.  Duration of illness and treatment effects on hippocampal volume in male patients with schizophrenia , 2005, British Journal of Psychiatry.

[27]  M. Webster,et al.  Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium , 2004, Molecular Psychiatry.

[28]  L. DeLisi,et al.  Cerebral ventricular change over the first 10 years after the onset of schizophrenia , 2004, Psychiatry Research: Neuroimaging.

[29]  S. McGurk,et al.  Cognitive and symptom predictors of work outcomes for clients with schizophrenia in supported employment. , 2003, Psychiatric services.

[30]  Kai Vogeley,et al.  Automated image analysis of disturbed cytoarchitecture in Brodmann area 10 in schizophrenia , 2003, Schizophrenia Research.

[31]  Patrick R Hof,et al.  Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia , 2003, Biological Psychiatry.

[32]  D. Braus,et al.  Effects of Long-Term Antipsychotic Treatment on NMDA Receptor Binding and Gene Expression of Subunits , 2003, Neurochemical Research.

[33]  Patrick R. Hof,et al.  Molecular and Cellular Evidence for an Oligodendrocyte Abnormality in Schizophrenia , 2002, Neurochemical Research.

[34]  Peter Falkai,et al.  Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. , 2002, Cerebral cortex.

[35]  Venkatesh N. Murthy,et al.  Rapid turnover of actin in dendritic spines and its regulation by activity , 2002, Nature Neuroscience.

[36]  T. Nagasu,et al.  Reduced neuropeptide Y mRNA levels in the frontal cortex of people with schizophrenia and bipolar disorder. , 2001, Brain research. Gene expression patterns.

[37]  Paul J. Harrison,et al.  Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a Western blot study of synaptophysin, GAP-43 and the complexins , 2001, Brain Research Bulletin.

[38]  W H Wong,et al.  Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Lieberman,et al.  Longitudinal study of brain morphology in first episode schizophrenia , 2001, Biological Psychiatry.

[40]  H. Tost,et al.  [Current overview of structural magnetic resonance imaging in schizophrenia]. , 2001, Fortschritte der Neurologie-Psychiatrie.

[41]  D. Braus,et al.  Aktueller Überblick über strukturelle Magnet-resonanztomographie bei Schizophrenie , 2001 .

[42]  A. Schleicher,et al.  Automated image analysis of disturbed cytoarchitecture in Brodmann area 10 in schizophrenia: A post-mortem study , 2000, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[43]  K. Davis,et al.  Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients , 2000, Biological Psychiatry.

[44]  Paul J. Harrison,et al.  Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs , 2000, Molecular Psychiatry.

[45]  L. Garey,et al.  Increase in HLA‐DR Immunoreactive Microglia in Frontal and Temporal Cortex of Chronic Schizophrenics , 2000, Journal of neuropathology and experimental neurology.

[46]  W. Honer,et al.  No evidence for astrogliosis in brains of schizophrenic patients. A post‐mortem study , 1999, Neuropathology and applied neurobiology.

[47]  J. Coyle,et al.  Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. , 1998, The American journal of psychiatry.

[48]  A Carlsson,et al.  Neurotransmitter aberrations in schizophrenia: new perspectives and therapeutic implications. , 1997, Life sciences.

[49]  Alan D. Lopez,et al.  Evidence-Based Health Policy--Lessons from the Global Burden of Disease Study , 1996, Science.

[50]  Daniel R Weinberger,et al.  On the Plausibility of “The Neurodevelopmental Hypothesis” of Schizophrenia , 1996, Neuropsychopharmacology.

[51]  Michael F. Green,et al.  What are the functional consequences of neurocognitive deficits in schizophrenia? , 1996, The American journal of psychiatry.

[52]  J. Olney,et al.  Glutamate receptor dysfunction and schizophrenia. , 1995, Archives of general psychiatry.

[53]  P. Goldman-Rakic,et al.  Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. , 1995, Archives of general psychiatry.

[54]  B. Rabin,et al.  An association between anti-hippocampal antibody concentration and lymphocyte production of IL-2 in patients with schizophrenia , 1994, Psychological Medicine.

[55]  P. Andrén,et al.  An animal model for coexisting tardive dyskinesia and tardive parkinsonism: a glutamate hypothesis for tardive dyskinesia. , 1993, Clinical neuropharmacology.

[56]  S. B. Kater,et al.  Neurotransmitter regulation of neuronal outgrowth, plasticity and survival , 1989, Trends in Neurosciences.

[57]  T. J. Crow,et al.  Developmental arrest of cerebral asymmetries in early onset schizophrenia , 1989, Psychiatry Research.

[58]  M. Shepherd,et al.  The natural history of schizophrenia: a 5-year prospective follow-up of a representative sample of schizophrenics by means of a standardized clinical and social assessment , 1983, Psychological Medicine.

[59]  E. Jazin,et al.  BMC Psychiatry BioMed Central Research article Inflammation-related genes up-regulated in schizophrenia brains , 2007 .

[60]  H. Beckmann,et al.  Prenatal developmental disturbances in the limbic allocortex in schizophrenics , 2005, Journal of Neural Transmission.

[61]  D. Braus,et al.  Hippocampal volume and cell proliferation after acute and chronic clozapine or haloperidol treatment , 2004, Journal of Neural Transmission.

[62]  D. Braus,et al.  Die Wirkung von Antipsychotika auf glutamaterge Neurotransmission im Tiermodell , 2004, Der Nervenarzt.

[63]  P. Goldman-Rakic,et al.  Regional specificity in the neuropathologic substrates of schizophrenia: a morphometric analysis of Broca's area 44 and area 9. , 2003, Archives of general psychiatry.

[64]  A. Phillips,et al.  Altered immunoreactivity of complexin protein in prefrontal cortex in severe mental illness , 2002, Molecular Psychiatry.

[65]  B. Rabin,et al.  Autoimmunity in schizophrenia: a review of recent findings. , 1993, Annals of medicine.