Line-Stepping for Shell Meshes

This paper presents a new method for creating a thick shell tetrahedral mesh from a triangular surface mesh. Our main goal is to create the thickest possible shell mesh with the lowest possible number of tetrahedrons. Low count tetrahedral meshes is desirable for animating deformable objects where accuracy is less important and to produce shell maps and signed distance fields. In this work we propose to improve convergence rate of past work.

[1]  Peter J. Giblin,et al.  Pre-symmetry Sets of 3D Shapes , 2005, DSSCV.

[2]  Carol O'Sullivan,et al.  Adaptive medial-axis approximation for sphere-tree construction , 2004, TOGS.

[3]  Christopher M. Bishop,et al.  Non-linear Bayesian Image Modelling , 2000, ECCV.

[4]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[5]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[6]  Kaleem Siddiqi,et al.  Flux invariants for shape , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[7]  Ronald Fedkiw,et al.  Adaptive physics based tetrahedral mesh generation using level sets , 2005, Engineering with Computers.

[8]  Kenny Erleben,et al.  The Thin Shell Tetrahedral Mesh , 2005 .

[9]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[10]  J. Baerentzen,et al.  Signed distance computation using the angle weighted pseudonormal , 2005, IEEE Transactions on Visualization and Computer Graphics.

[11]  Paul A. Yushkevich,et al.  Deformable M-Reps for 3D Medical Image Segmentation , 2003, International Journal of Computer Vision.

[12]  Kaleem Siddiqi,et al.  Divergence-Based Medial Surfaces , 2000, ECCV.

[13]  Leif Kobbelt,et al.  OpenMesh: A Generic and Efficient Polygon Mesh Data Structure , 2002 .

[14]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[15]  Luc Florack,et al.  Deep Structure, Singularities, and Computer Vision, First International Workshop, DSSCV 2005, Maastricht, The Netherlands, June 9-10, 2005, Revised Selected Papers , 2005, DSSCV.

[16]  Serban D. Porumbescu,et al.  Shell maps , 2005, SIGGRAPH '05.

[17]  Dinesh Manocha,et al.  Accurate computation of the medial axis of a polyhedron , 1999, SMA '99.

[18]  Jakob Andreas Bærentzen,et al.  Signed Distance Computation Using the Angle Weighted Pseudonormal , 2005, IEEE Trans. Vis. Comput. Graph..