Antiatherogenic effect of angiotensin converting enzyme inhibitor (benazepril) and angiotensin II receptor antagonist (valsartan) in the cholesterol-fed rabbits.

[1]  W. A. Bradley,et al.  Valsartan: Preclinical and Clinical Profile of an Antihypertensive Angiotensin‐II Antagonist , 1995 .

[2]  M. Rekhter,et al.  Active proliferation of different cell types, including lymphocytes, in human atherosclerotic plaques. , 1995, The American journal of pathology.

[3]  A. Chobanian,et al.  Dissociation between the antiatherosclerotic effect of trandolapril and suppression of serum and aortic angiotensin-converting enzyme activity in the Watanabe heritable hyperlipidemic rabbit. , 1995, Hypertension.

[4]  M. Kowala,et al.  Regression of Early Atherosclerosis in Hyperlipidemic Hamsters Induced by Fosinopril and Captopril , 1995, Journal of cardiovascular pharmacology.

[5]  M Komori,et al.  [Computerized three-dimensional reconstruction of human embryos and their organs using the "NIH image" software]. , 1995, Kaibogaku zasshi. Journal of anatomy.

[6]  M. Rekhter,et al.  Does platelet-derived growth factor-A chain stimulate proliferation of arterial mesenchymal cells in human atherosclerotic plaques? , 1994, Circulation research.

[7]  M. Kowala,et al.  Inhibitors of angiotensin converting enzyme decrease early atherosclerosis in hyperlipidemic hamsters. Fosinopril reduces plasma cholesterol and captopril inhibits macrophage-foam cell accumulation independently of blood pressure and plasma lipids. , 1994, Atherosclerosis.

[8]  S. Golubev,et al.  Influence of benazepril and captopril on blood pressure, glucocorticoids and progesterone in essential hypertensives. , 1993, Journal of human hypertension.

[9]  P. Charpiot,et al.  ACE inhibition with perindopril and atherogenesis-induced structural and functional changes in minipig arteries. , 1993, Arteriosclerosis and thrombosis : a journal of vascular biology.

[10]  M. Kowala Captopril decreases accelerated atherosclerosis in hypertensive one kidney one clip rats fed cholesterol , 1993 .

[11]  O. Carretero,et al.  Role of kinins and nitric oxide in the effects of angiotensin converting enzyme inhibitors on neointima formation. , 1993, Circulation research.

[12]  J. Wood,et al.  Kidney is an important target for the antihypertensive action of an angiotensin II receptor antagonist in spontaneously hypertensive rats. , 1993, Hypertension.

[13]  E. Leonard,et al.  Detection of monocyte chemoattractant protein-1 in human atherosclerotic lesions by an anti-monocyte chemoattractant protein-1 monoclonal antibody. , 1993, Human Pathology.

[14]  M. Rekhter,et al.  Cell proliferation in human arteriovenous fistulas used for hemodialysis. , 1993, Arteriosclerosis and thrombosis : a journal of vascular biology.

[15]  E. H. Blaine,et al.  Differential effects of renin-angiotensin system blockade on atherogenesis in cholesterol-fed rabbits. , 1993, The Journal of clinical investigation.

[16]  T. Sasaki,et al.  Induction of murine macrophage growth by modified LDLs. , 1993, Arteriosclerosis and thrombosis : a journal of vascular biology.

[17]  M. Kowala,et al.  Prostacyclin agonists reduce early atherosclerosis in hyperlipidemic hamsters. Octimibate and BMY 42393 suppress monocyte chemotaxis, macrophage cholesteryl ester accumulation, scavenger receptor activity, and tumor necrosis factor production. , 1993, Arteriosclerosis and thrombosis : a journal of vascular biology.

[18]  B. Nordestgaard,et al.  Effect of testosterone on atherogenesis in cholesterol-fed rabbits with similar plasma cholesterol levels. , 1993, Atherosclerosis.

[19]  M. Safar,et al.  REMODELLING OF THE VASCULAR SYSTEM IN RESPONSE TO HYPERTENSION AND DRUG THERAPY , 1992, Clinical and experimental pharmacology & physiology. Supplement.

[20]  A. Chobanian,et al.  Trandolapril inhibits atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. , 1992, Hypertension.

[21]  M. Reidy,et al.  Angiotensin-converting enzyme inhibitor versus angiotensin II, AT1 receptor antagonist. Effects on smooth muscle cell migration and proliferation after balloon catheter injury. , 1991, The American journal of pathology.

[22]  R. Busse,et al.  Ramiprilat Enhances Endothelial Autacoid Formation by Inhibiting Breakdown of Endothelium‐Derived Bradykinin , 1991, Hypertension.

[23]  J. Wood,et al.  Prolonged Angiotensin II Antagonism in Spontaneously Hypertensive Rats: Hemodynamic and Biochemical Consequences , 1991, Hypertension.

[24]  H. Baumgartner,et al.  Endothelial Dysfunction and Subendothelial Monocyte Macrophages in Hypertension: Effect of Angiotensin Converting Enzyme Inhibition , 1991, Hypertension.

[25]  P. Nestel,et al.  Cholesterol accumulation in J774 macrophages induced by triglyceride-rich lipoproteins. Comparison of very low density lipoprotein from subjects with type III, IV, and V hyperlipoproteinemias. , 1991, Arteriosclerosis and thrombosis : a journal of vascular biology.

[26]  R. Palmer,et al.  Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. , 1991, Arteriosclerosis and thrombosis : a journal of vascular biology.

[27]  R. Becker,et al.  Preservation of Endothelial Function by Ramipril in Rabbits on a Long‐Term Atherogenic Diet , 1991, Journal of cardiovascular pharmacology.

[28]  S. Ylä-Herttuala,et al.  Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. , 1990, Arteriosclerosis.

[29]  A. Chobanian,et al.  Antiatherogenic effect of captopril in the Watanabe heritable hyperlipidemic rabbit. , 1990, Hypertension.

[30]  G. Åberg,et al.  Effects of Captopril on Atherosclerosis in Cynomolgus Monkeys , 1990, Journal of cardiovascular pharmacology.

[31]  H. Baumgartner,et al.  Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. , 1989, Science.

[32]  T. Carew,et al.  Oxidative Modification of Beta‐Very Low Density Lipoprotein: Potential Role in Monocyte Recruitment and Foam Cell Formation , 1989, Arteriosclerosis.

[33]  Rochelle L. Garcia,et al.  Analysis of proliferative grade using anti-PCNA/cyclin monoclonal antibodies in fixed, embedded tissues. Comparison with flow cytometric analysis. , 1989, The American journal of pathology.

[34]  W. A. Bradley,et al.  Distinct murine macrophage receptor pathway for human triglyceride-rich lipoproteins. , 1988, The Journal of clinical investigation.

[35]  S Moncada,et al.  The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. , 1987, Biochemical and biophysical research communications.

[36]  S. Moncada,et al.  Comparative pharmacology of endothelium‐derived relaxing factor, nitric oxide and prostacyclin in platelets , 1987, British journal of pharmacology.

[37]  M. B. Zimmerman,et al.  Effects of chronic administration of angiotensin converting enzyme (ACE) inhibitors on blood pressure and tissue ACE activity in the SHR. , 1987, Clinical and experimental hypertension. Part A, Theory and practice.

[38]  A. Gown,et al.  HHF35, a muscle-actin-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization. , 1987, The American journal of pathology.

[39]  A. Gown,et al.  Immunocytochemical analysis of cellular components in atherosclerotic lesions. Use of monoclonal antibodies with the Watanabe and fat-fed rabbit. , 1986, Arteriosclerosis.

[40]  W. A. Bradley,et al.  The beta-VLDL receptor pathway of murine P388D1 macrophages. , 1986, Journal of lipid research.

[41]  J. Weinstock,et al.  Isolated liver granulomas of murine Schistosoma mansoni contain components of the angiotensin system. , 1983, Journal of immunology.

[42]  Gerrity Rg The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. , 1981 .

[43]  E. Goetzl,et al.  The preferential human mononuclear leukocyte chemotactic activity of the substituent tetrapeptides of angiotensin II. , 1980, Biochemical and biophysical research communications.