The multiscale finite element method for nonlinear continuum localization problems at full fine-scale fidelity, illustrated through phase-field fracture and plasticity

Abstract The residual-driven iterative corrector scheme recently presented by the authors for linear problems has opened a pathway to achieve the best possible fine-mesh accuracy in the multiscale finite element method (MsFEM). In this article, we focus on a series of algorithmic and variational extensions that enable efficient residual-driven correction for nonlinear localization problems. These include a synergistic combination of Newton and corrector iterations to reduce the algorithmic complexity, the use of corrector degrees of freedom in the Galerkin projection to eliminate the repeated recomputation of multiscale basis functions during Newton iterations, and a natural residual-based strategy for fully automatic fine-mesh adaptivity. We illustrate through numerical examples from phase-field fracture and plasticity that the MsFEM with residual-driven adaptive correction achieves full fine-scale fidelity while also being computationally more efficient than the pristine MsFEM. We also show that for localization problems, it significantly increases accuracy and robustness over standard oversampling.

[1]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[2]  Daniel Peterseim,et al.  Oversampling for the Multiscale Finite Element Method , 2012, Multiscale Model. Simul..

[3]  Vinh Phu Nguyen,et al.  MULTISCALE CONTINUOUS AND DISCONTINUOUS MODELING OF HETEROGENEOUS MATERIALS: A REVIEW ON RECENT DEVELOPMENTS , 2011 .

[4]  Jacob Fish,et al.  Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials , 2007 .

[5]  Victor M. Calo,et al.  Multiscale stabilization for convection-dominated diffusion in heterogeneous media , 2015, 1509.06833.

[6]  Pengfei Liu,et al.  An iteratively adaptive multi-scale finite element method for elliptic PDEs with rough coefficients , 2017, J. Comput. Phys..

[7]  Dominik Schillinger,et al.  Isogeometric collocation for phase-field fracture models , 2015 .

[8]  Indra Vir Singh,et al.  An adaptive multiscale phase field method for brittle fracture , 2018 .

[9]  Julien Yvonnet,et al.  Homogenization methods and multiscale modeling : Nonlinear problems , 2017 .

[10]  Tarek I. Zohdi,et al.  Homogenization Methods and Multiscale Modeling , 2004 .

[11]  Thomas J. R. Hughes,et al.  A variational multiscale approach to strain localization – formulation for multidimensional problems , 2000 .

[12]  T. Hou,et al.  Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .

[13]  Stein K. F. Stoter,et al.  Phase‐field boundary conditions for the voxel finite cell method: Surface‐free stress analysis of CT‐based bone structures , 2017, International journal for numerical methods in biomedical engineering.

[14]  R. Borst Numerical aspects of cohesive-zone models , 2003 .

[15]  Patrick Jenny,et al.  Iterative multiscale finite-volume method , 2008, J. Comput. Phys..

[16]  Ernst Rank,et al.  Multiscale computations with a combination of the h- and p-versions of the finite-element method , 2003 .

[17]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[18]  J. Oliver MODELLING STRONG DISCONTINUITIES IN SOLID MECHANICS VIA STRAIN SOFTENING CONSTITUTIVE EQUATIONS. PART 1: FUNDAMENTALS , 1996 .

[19]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[20]  Alberto Salvadori,et al.  A multiscale framework for localizing microstructures towards the onset of macroscopic discontinuity , 2014 .

[21]  Yalchin Efendiev,et al.  An adaptive local–global multiscale finite volume element method for two-phase flow simulations , 2007 .

[22]  Tinh Quoc Bui,et al.  A rate-dependent hybrid phase field model for dynamic crack propagation , 2017 .

[23]  Yalchin Efendiev,et al.  Residual-driven online generalized multiscale finite element methods , 2015, J. Comput. Phys..

[24]  Scott J. Hollister,et al.  Digital-image-based finite element analysis for bone microstructure using conjugate gradient and Gaussian filter techniques , 1993, Optics & Photonics.

[25]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[26]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[27]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[28]  P Rüegsegger,et al.  Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. , 1995, Medical engineering & physics.

[29]  Takashi Takahashi,et al.  Robust variational segmentation of 3D bone CT data with thin cartilage interfaces , 2018, Medical Image Anal..

[30]  Glaucio H. Paulino,et al.  A unified potential-based cohesive model of mixed-mode fracture , 2009 .

[31]  Mgd Marc Geers,et al.  Multi-scale continuous–discontinuous framework for computational-homogenization–localization , 2012 .

[32]  Mary F. Wheeler,et al.  A Phase-Field Method for Propagating Fluid-Filled Fractures Coupled to a Surrounding Porous Medium , 2015, Multiscale Model. Simul..

[33]  U. Hetmaniuk,et al.  A SPECIAL FINITE ELEMENT METHOD BASED ON COMPONENT MODE SYNTHESIS , 2010 .

[34]  Tinh Quoc Bui,et al.  Computational chemo-thermo-mechanical coupling phase-field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials , 2019, Computer Methods in Applied Mechanics and Engineering.

[35]  Stein K. F. Stoter,et al.  The diffuse Nitsche method: Dirichlet constraints on phase‐field boundaries , 2018 .

[36]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[37]  Peter Wriggers,et al.  An Introduction to Computational Micromechanics , 2004 .

[38]  H. Skinner,et al.  Prediction of femoral fracture load using automated finite element modeling. , 1997, Journal of biomechanics.

[39]  Thomas Y. Hou,et al.  Optimal Local Multi-scale Basis Functions for Linear Elliptic Equations with Rough Coefficient , 2015, 1508.00346.

[40]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[41]  Markus Kästner,et al.  Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines , 2018, Computer Methods in Applied Mechanics and Engineering.

[42]  J. Michel,et al.  Nonuniform transformation field analysis , 2003 .

[43]  Dominik Schillinger,et al.  A multiscale predictor/corrector scheme for efficient elastoplastic voxel finite element analysis, with application to CT-based bone strength prediction , 2018 .

[44]  Noboru Kikuchi,et al.  Digital image-based modeling applied to the homogenization analysis of composite materials , 1997 .

[45]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[46]  Peter Wriggers,et al.  Variational phase-field formulation of non-linear ductile fracture , 2018, Computer Methods in Applied Mechanics and Engineering.

[47]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[48]  M. Geers,et al.  An enhanced multi‐scale approach for masonry wall computations with localization of damage , 2007 .

[49]  Olivier Allix,et al.  A non-intrusive global/local approach applied to phase-field modeling of brittle fracture , 2018, Advanced Modeling and Simulation in Engineering Sciences.

[50]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[51]  Fpt Frank Baaijens,et al.  An approach to micro-macro modeling of heterogeneous materials , 2001 .

[52]  Stefan Turek,et al.  Advances Concerning Multiscale Methods and Uncertainty Quantification in EXA-DUNE , 2016, Software for Exascale Computing.

[53]  Ekkehard Ramm,et al.  Modeling of failure in composites by X-FEM and level sets within a multiscale framework , 2008 .

[54]  B. K. Mishra,et al.  A new multiscale phase field method to simulate failure in composites , 2018, Adv. Eng. Softw..

[55]  Ahmed Benallal,et al.  Bifurcation and stability issues in gradient theories with softening , 2006 .

[56]  Ernst Rank,et al.  The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics , 2012 .

[57]  Eric Lorentz,et al.  Gradient damage models: Toward full-scale computations , 2011 .

[58]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[59]  Marc G. D. Geers,et al.  A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials , 2017, J. Comput. Phys..

[60]  Ted Belytschko,et al.  A multiscale projection method for macro/microcrack simulations , 2007 .

[61]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[62]  Yalchin Efendiev,et al.  Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..

[63]  Sohichi Hirose,et al.  Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements , 2018 .

[64]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[65]  Axel Klawonn,et al.  The approximate component mode synthesis special finite element method in two dimensions: Parallel implementation and numerical results , 2015, J. Comput. Appl. Math..

[66]  Lam H. Nguyen,et al.  A residual-driven local iterative corrector scheme for the multiscale finite element method , 2019, J. Comput. Phys..

[67]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[68]  Barbara Chapman,et al.  Using OpenMP - portable shared memory parallel programming , 2007, Scientific and engineering computation.

[69]  B. K. Mishra,et al.  A local moving extended phase field method (LMXPFM) for failure analysis of brittle materials , 2018, Computer Methods in Applied Mechanics and Engineering.

[70]  Kazuyoshi Fushinobu,et al.  Hybrid phase field simulation of dynamic crack propagation in functionally graded glass-filled epoxy , 2016 .

[71]  Julia Mergheim,et al.  A variational multiscale method to model crack propagation at finite strains , 2009 .

[72]  Hong-wu Zhang,et al.  Extended multiscale finite element method for mechanical analysis of heterogeneous materials , 2010 .

[73]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[74]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[75]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[76]  Ekkehard Ramm,et al.  Locality constraints within multiscale model for non‐linear material behaviour , 2007 .