Real number computation through Gray code embedding

We propose an embedding G of the unit open interval to the set {0, 1}⊥,1ω of infinite sequences of {0, 1} with at most one undefined element. This embedding is based on Gray code and it is a topological embedding with a natural topology on {0, 1}⊥,1ω. We also define a machine called an indeterministic multihead Type 2 machine which input/output sequences in {0, 1}ω⊥,1, and show that the computability notion induced on real functions through the embedding G is equivalent to the one induced by the signed digit representation and Type 2 machines. We also show that basic algorithms can be expressed naturally with respect to this embedding.

[1]  Jean Vuillemin Exact Real Computer Arithmetic with Continued Fractions , 1990, IEEE Trans. Computers.

[2]  A. K. Dewdney,et al.  New Turing Omnibus , 1993 .

[3]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[4]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[5]  Peter Hertling,et al.  Topological properties of real number representations , 2002, Theor. Comput. Sci..

[6]  Masayoshi Hata,et al.  The Takagi function and its generalization , 1984 .

[7]  Pietro Di Gianantonio Real Number Computability and Domain Theory , 1996, Inf. Comput..

[8]  Abbas Edalat,et al.  A Domain-Theoretic Approach to Computability on the Real Line , 1999, Theor. Comput. Sci..

[9]  A. Grzegorczyk On the definitions of computable real continuous functions , 1957 .

[10]  Kazunori Ueda,et al.  Design of the Kernel Language for the Parallel Inference Machine , 1990, Computer/law journal.

[11]  Abbas Edalat,et al.  A new representation for exact real numbers , 1997, MFPS.

[12]  Pietro Di Gianantonio An Abstract Data Type for Real Numbers , 1999, Theor. Comput. Sci..

[13]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[14]  Marian B. Pour-El,et al.  An Introduction to Computable Analysis , 1989 .

[15]  Klaus Weihrauch,et al.  Type 2 Recursion Theory , 1985, Theor. Comput. Sci..

[16]  Paul Hudak,et al.  A gentle introduction to Haskell , 1992, SIGP.

[17]  J. C. Shepherdson,et al.  Computation Over Abstract Structures: Serial and Parallel Procedures and Friedman's Effective Definitional Schemes , 1975 .

[18]  N. Sundararajan,et al.  Data structure based on Gray code encoding for graphics and image processing , 1990, Optics & Photonics.

[19]  Hans-Juergen Boehm,et al.  Exact real arithmetic: a case study in higher order programming , 1986, LFP '86.