Tocotrienols confer resistance to ischemia in hypercholesterolemic hearts: insight with genomics

[1]  S. Ramos,et al.  Assessment of MMP-9, TIMP-1, and COX-2 in normal tissue and in advanced symptomatic and asymptomatic carotid plaques , 2011, Thrombosis journal.

[2]  D. Das,et al.  Multifaceted role of tocotrienols in cardioprotection supports their structure: function relation , 2011, Genes & Nutrition.

[3]  J. Storch,et al.  Tissue-specific Functions in the Fatty Acid-binding Protein Family* , 2010, The Journal of Biological Chemistry.

[4]  S. Tyagi,et al.  MMP-9 Gene Ablation and TIMP-4 Mitigate PAR-1-Mediated Cardiomyocyte Dysfunction: A Plausible Role of Dicer and miRNA , 2010, Cell Biochemistry and Biophysics.

[5]  R. Schulz,et al.  Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. , 2010, Cardiovascular research.

[6]  M. Reiser,et al.  MMP-1 serum levels predict coronary atherosclerosis in humans , 2009, Cardiovascular diabetology.

[7]  K. Hamilton,et al.  Effect of ovariectomy on cardiac gene expression: inflammation and changes in SOCS gene expression. , 2008, Physiological genomics.

[8]  T. Watkins,et al.  γ-tocotrienol as a hypocholesterolemic and antioxidant agent in rats fed atherogenic diets , 1993, Lipids.

[9]  James A. Clark,et al.  Estrogen receptor-β mediates male-female differences in the development of pressure overload hypertrophy , 2005 .

[10]  Á. Tósaki,et al.  Preconditioning in intact and previously diseased myocardium: laboratory or clinical dilemma? , 2004, Antioxidants & redox signaling.

[11]  P. Dijke,et al.  New insights into TGF-β–Smad signalling , 2004 .

[12]  F. Cambien,et al.  Plasma Concentrations and Genetic Variation of Matrix Metalloproteinase 9 and Prognosis of Patients With Cardiovascular Disease , 2003, Circulation.

[13]  C. Heldin,et al.  Smad regulation in TGF-beta signal transduction. , 2001, Journal of cell science.

[14]  G. J. van der Vusse,et al.  Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. , 1999, Circulation research.

[15]  J. Mcwhir,et al.  Requirement for the heart‐type fatty acid binding protein in cardiac fatty acid utilization , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[16]  W. Salser,et al.  Novel tocotrienols of rice bran modulate cardiovascular disease risk parameters of hypercholesterolemic humans , 1997 .

[17]  H. Khor,et al.  Tocotrienols inhibit liver HMG CoA reductase activity in the guinea pig , 1995 .

[18]  R. Parker,et al.  Inhibitors of Cholesterol Biosynthesis. Part 2. Hypocholesterolemic and Antioxidant Activities of Benzopyran and Tetrahydronaphthalene Analogues of the Tocotrienols. , 1994 .

[19]  R. Parker,et al.  Inhibitors of cholesterol biosynthesis. 2. Hypocholesterolemic and antioxidant activities of benzopyran and tetrahydronaphthalene analogues of the tocotrienols. , 1994, Journal of medicinal chemistry.

[20]  R. Parker,et al.  Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. , 1993, The Journal of biological chemistry.

[21]  R. Parker,et al.  Hypocholesterolemic activity of synthetic and natural tocotrienols. , 1992, Journal of medicinal chemistry.

[22]  P. Brecher,et al.  Rabbit Heart Fatty Acid-Binding Protein Isolation, Characterization, and Application of a Monoclonal Antibody , 1989, Circulation research.

[23]  E. J. Battersby,et al.  Effect of pressure development on oxygen consumption by isolated rat heart. , 1967, The American journal of physiology.

[24]  D. Steinberg,et al.  INHIBITORS OF CHOLESTEROL BIOSYNTHESIS AND THE PROBLEM OF HYPERCHOLESTEROLEMIA , 1956, Annals of the New York Academy of Sciences.