Bayesian quantile regression-based partially linear mixed-effects joint models for longitudinal data with multiple features

In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.

[1]  Ernesto San Martín,et al.  Linear mixed models with skew-elliptical distributions: A Bayesian approach , 2008, Comput. Stat. Data Anal..

[2]  Hakan Demirtas,et al.  Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: a simulation assessment , 2008 .

[3]  W Liu,et al.  Joint Inference on HIV Viral Dynamics and Immune Suppression in Presence of Measurement Errors , 2010, Biometrics.

[4]  Wu Hulin,et al.  Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-Effects Modeling Approaches , 2006 .

[5]  R. Arellano-Valle,et al.  LIKELIHOOD BASED INFERENCE FOR SKEW-NORMAL INDEPENDENT LINEAR MIXED MODELS , 2010 .

[6]  Keith R. Abrams,et al.  Joint Modeling of Longitudinal and Survival Data , 2013 .

[7]  R. Koenker Quantile regression for longitudinal data , 2004 .

[8]  W. Fung,et al.  Median regression for longitudinal data , 2003, Statistics in medicine.

[9]  G. Yin,et al.  Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data , 2010, Biometrics.

[10]  Mendel Fygenson,et al.  INFERENCE FOR CENSORED QUANTILE REGRESSION MODELS IN LONGITUDINAL STUDIES , 2009, 0904.0080.

[11]  M. Fuentes,et al.  Journal of the American Statistical Association Bayesian Spatial Quantile Regression Bayesian Spatial Quantile Regression , 2022 .

[12]  Yangxin Huang,et al.  Bayesian inference for a nonlinear mixed-effects Tobit model with multivariate skew-t distributions: application to AIDS studies , 2012, The international journal of biostatistics.

[13]  Keming Yu,et al.  A Three-Parameter Asymmetric Laplace Distribution and Its Extension , 2005 .

[14]  Alessio Farcomeni,et al.  Longitudinal quantile regression in the presence of informative dropout through longitudinal–survival joint modeling , 2014, Statistics in medicine.

[15]  Yangxin Huang,et al.  Bayesian inference on partially linear mixed-effects joint models for longitudinal data with multiple features , 2017, Comput. Stat..

[16]  Lang Wu,et al.  Simultaneous inference and bias analysis for longitudinal data with covariate measurement error and missing responses. , 2011, Biometrics.

[17]  H. Lian,et al.  Bayesian quantile regression for longitudinal data models , 2012 .

[18]  B. Cade,et al.  A gentle introduction to quantile regression for ecologists , 2003 .

[19]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[20]  H. Kozumi,et al.  Gibbs sampling methods for Bayesian quantile regression , 2011 .

[21]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[22]  M Davidian,et al.  Estimating data transformations in nonlinear mixed effects models. , 2000, Biometrics.

[23]  P. Diggle Analysis of Longitudinal Data , 1995 .

[24]  Andrew W. Roddam,et al.  Measurement Error in Nonlinear Models: a Modern Perspective , 2008 .

[25]  Marie Davidian,et al.  Nonlinear Models for Repeated Measurement Data , 1995 .

[26]  Moshe Buchinsky CHANGES IN THE U.S. WAGE STRUCTURE 1963-1987: APPLICATION OF QUANTILE REGRESSION , 1994 .

[27]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[28]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[29]  Yangxin Huang,et al.  Bayesian quantile regression‐based nonlinear mixed‐effects joint models for time‐to‐event and longitudinal data with multiple features , 2016, Statistics in medicine.

[30]  Keming Yu,et al.  Bayesian quantile regression , 2001 .

[31]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[32]  Wei Liu,et al.  Simultaneous Inference for Semiparametric Nonlinear Mixed‐Effects Models with Covariate Measurement Errors and Missing Responses , 2007, Biometrics.

[33]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[34]  Alessio Farcomeni,et al.  Quantile regression for longitudinal data based on latent Markov subject-specific parameters , 2010, Statistics and Computing.

[35]  J. Ibrahim,et al.  A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. , 2003, Biometrics.

[36]  Mi-Ok Kim,et al.  Semiparametric Approach to a Random Effects Quantile Regression Model , 2011, Journal of the American Statistical Association.

[37]  S. Sahu,et al.  A new class of multivariate skew distributions with applications to bayesian regression models , 2003 .

[38]  Lang Wu,et al.  A Joint Model for Nonlinear Mixed-Effects Models With Censoring and Covariates Measured With Error, With Application to AIDS Studies , 2002 .

[39]  R. Arellano-Valle,et al.  Bayesian Inference for Skew-normal Linear Mixed Models , 2007 .

[40]  Paras Mandal,et al.  A Hybrid Intelligent Model for Deterministic and Quantile Regression Approach for Probabilistic Wind Power Forecasting , 2014, IEEE Transactions on Power Systems.

[41]  Yangxin Huang,et al.  Mixed-Effects Tobit Joint Models for Longitudinal Data with Skewness, Detection Limits, and Measurement Errors , 2012 .

[42]  Yangxin Huang,et al.  Bayesian inference on joint models of HIV dynamics for time‐to‐event and longitudinal data with skewness and covariate measurement errors , 2011, Statistics in medicine.

[43]  Julian Stander,et al.  Bayesian analysis of a Tobit quantile regression model , 2007 .

[44]  Hua Liang,et al.  Generalized Partially Linear Measurement Error Models , 2005 .

[45]  R. Koenker,et al.  Goodness of Fit and Related Inference Processes for Quantile Regression , 1999 .

[46]  J. Phair,et al.  The Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of the participants. , 1987, American journal of epidemiology.

[47]  M. Bottai,et al.  Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.

[48]  Cristina Davino,et al.  Quantile Regression: Theory and Applications , 2013 .

[49]  R. Koenker,et al.  Regression Quantiles , 2007 .

[50]  M. Genton,et al.  On fundamental skew distributions , 2005 .

[51]  S. Lipsitz,et al.  Quantile Regression Methods for Longitudinal Data with Drop‐outs: Application to CD4 Cell Counts of Patients Infected with the Human Immunodeficiency Virus , 1997 .

[52]  Yangxin Huang,et al.  Quantile regression-based Bayesian semiparametric mixed-effects models for longitudinal data with non-normal, missing and mismeasured covariate , 2016 .

[53]  Hulin Wu,et al.  Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System , 2006, Biometrics.

[54]  M. Bottai,et al.  Mixed-Effects Models for Conditional Quantiles with Longitudinal Data , 2009, The international journal of biostatistics.

[55]  Yangxin Huang,et al.  A bayesian approach to joint mixed-effects models with a skew-normal distribution and measurement errors in covariates. , 2011, Biometrics.

[56]  Samuel Kotz,et al.  Maximum Likelihood Estimation of Asymmetric Laplace Parameters , 2002 .

[57]  Keming Yu,et al.  Quantile regression: applications and current research areas , 2003 .

[58]  Genya Kobayashi,et al.  Bayesian analysis of quantile regression for censored dynamic panel data , 2012, Comput. Stat..

[59]  H Wu,et al.  Population HIV‐1 Dynamics In Vivo: Applicable Models and Inferential Tools for Virological Data from AIDS Clinical Trials , 1999, Biometrics.

[60]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[61]  Samuel Kotz,et al.  Asymmetric Multivariate Laplace Distribution , 2001 .

[62]  Hua Liang,et al.  Generalized partially linear mixed-effects models incorporating mismeasured covariates , 2009, Annals of the Institute of Statistical Mathematics.

[63]  Yuzhu Tian,et al.  Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates , 2016, Comput. Stat..