Gene family information facilitates variant interpretation and identification of disease-associated genes in neurodevelopmental disorders

[1]  M. Daly,et al.  Gene family information facilitates variant interpretation and identification of disease-associated genes , 2017, bioRxiv.

[2]  M. Daly,et al.  Identification of pathogenic variant enriched regions across genes and gene families , 2019, bioRxiv.

[3]  M. Daly,et al.  De novo variants in neurodevelopmental disorders with epilepsy , 2018, Nature Genetics.

[4]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[5]  Stephan J Sanders,et al.  Refining the role of de novo protein truncating variants in neurodevelopmental disorders using population reference samples , 2016, Nature Genetics.

[6]  Michael R. Johnson,et al.  De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. , 2014, American journal of human genetics.

[7]  L. Vissers,et al.  Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability , 2016, Nature Neuroscience.

[8]  Peer Bork,et al.  Spatiotemporal variation of mammalian protein complex stoichiometries , 2016, Genome Biology.

[9]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[10]  Stephan J Sanders,et al.  De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies , 2015, Science.

[11]  Gal Chechik,et al.  Gene Expression Switching of Receptor Subunits in Human Brain Development , 2015, PLoS Comput. Biol..

[12]  Gonçalo R. Abecasis,et al.  Unified representation of genetic variants , 2015, Bioinform..

[13]  Tomas W. Fitzgerald,et al.  Large-scale discovery of novel genetic causes of developmental disorders , 2014, Nature.

[14]  Boris Yamrom,et al.  The contribution of de novo coding mutations to autism spectrum disorder , 2014, Nature.

[15]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[16]  Epilepsy Phenome,et al.  De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. , 2014, American journal of human genetics.

[17]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[18]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[19]  David Haussler,et al.  Current status and new features of the Consensus Coding Sequence database , 2013, Nucleic Acids Res..

[20]  S. Cook,et al.  Paralogue annotation identifies novel pathogenic variants in patients with Brugada syndrome and catecholaminergic polymorphic ventricular tachycardia , 2013, Journal of Medical Genetics.

[21]  M. Long,et al.  New genes as drivers of phenotypic evolution , 2013, Nature Reviews Genetics.

[22]  Michael R. Johnson,et al.  De novo mutations in the classic epileptic encephalopathies , 2013, Nature.

[23]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[24]  B. V. van Bon,et al.  Diagnostic exome sequencing in persons with severe intellectual disability. , 2012, The New England journal of medicine.

[25]  D. Horn,et al.  Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study , 2012, The Lancet.

[26]  Jonathan E. Dickerson,et al.  On the Origins of Mendelian Disease Genes in Man: The Impact of Gene Duplication , 2011, Molecular biology and evolution.

[27]  Syed Haider,et al.  Ensembl BioMarts: a hub for data retrieval across taxonomic space , 2011, Database J. Biol. Databases Curation.

[28]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[29]  Serafim Batzoglou,et al.  Evolutionary constraint facilitates interpretation of genetic variation in resequenced human genomes. , 2010, Genome research.

[30]  A. Sali,et al.  Evolutionary constraints on structural similarity in orthologs and paralogs , 2009, Protein science : a publication of the Protein Society.

[31]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[32]  Albert J. Vilella,et al.  EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. , 2009, Genome research.

[33]  Kalin H. Vetsigian,et al.  Exposing the fitness contribution of duplicated genes , 2008, Nature Genetics.

[34]  Guy Perrière,et al.  Tree pattern matching in phylogenetic trees: automatic search for orthologs or paralogs in homologous gene sequence databases , 2005, Bioinform..

[35]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[36]  M. Kok,et al.  CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system , 2003, Oncogene.

[37]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[38]  Geoffrey J. Barton,et al.  Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation , 1993, Comput. Appl. Biosci..

[39]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .