TIDAL DISSIPATION IN A HOMOGENEOUS SPHERICAL BODY. II. THREE EXAMPLES: MERCURY, IO, AND Kepler-10 b

Abstract : In Efroimsky & Makarov (Paper I), we derived from the first principles a formula for the tidal heating rate in a homogeneous sphere, compared it with the previously used formulae, and noted the differences. Now we present case studies: Mercury, Kepler-10 b, and a triaxial Io. A sharp frequency dependence of k (sub2) /Q near spin orbit resonances yields a sharp dependence of k (sub2) /Q (and, therefore, of tidal heating) upon the spin rate. Thereby physical libration plays a major role in tidal heating of synchronously rotating planets. The magnitude of libration in the spin rate being defined by the planet s triaxiality, the latter becomes a factor determining the dissipation rate. Other parameters equal, a strongly triaxial synchronized body generates more heat than a similar body of a more symmetrical shape. After an initially triaxial object melts and loses its triaxiality, dissipation becomes less intensive; the body can solidify, with the tidal bulge becoming a new figure with triaxiality lower than the original. We derive approximate expressions for the dissipation rate in a Maxwell planet with the Maxwell time longer than the inverse tidal frequency. The expressions derived pertain to the 1:1 and 3:2 resonances and a nonresonant case; so they are applicable to most close-in super-Earths detected. In these planets, the heating outside synchronism is weakly dependent on the eccentricity and obliquity, provided both these parameters s values are moderate. According to our calculation, Kepler-10 b could hardly survive the intensive tidal heating without being synchronized, circularized, and reshaped through a complete or partial melt-down.

[1]  G. Tobie,et al.  TIDALLY INDUCED THERMAL RUNAWAYS ON EXTRASOLAR EARTHS: IMPACT ON HABITABILITY , 2010 .

[2]  M. Efroimsky,et al.  NO PSEUDOSYNCHRONOUS ROTATION FOR TERRESTRIAL PLANETS AND MOONS , 2012, 1209.1616.

[3]  Frederic A. Rasio,et al.  TIDAL EVOLUTION OF CLOSE-IN PLANETS , 2010, 1007.4785.

[4]  J. Leconte,et al.  The effect of rotation and tidal heating on the thermal lightcurves of super Mercuries , 2013, 1305.3858.

[5]  J. Wisdom Spin-Orbit Secondary Resonance Dynamics of Enceladus , 2004 .

[6]  Julien Frouard,et al.  Spin–orbit evolution of Mercury revisited , 2013, 1307.0136.

[7]  M. Efroimsky,et al.  DYNAMICAL EVOLUTION AND SPIN-ORBIT RESONANCES OF POTENTIALLY HABITABLE EXOPLANETS. THE CASE OF GJ 667C , 2012, 1208.0814.

[8]  Piet Hut,et al.  Tidal evolution in close binary systems , 1981 .

[9]  T. Guillot,et al.  Composition and fate of short-period super-Earths: The case of CoRoT-7b , 2009, 0907.3067.

[10]  Why Is the Moon Synchronously Rotating , 2013, 1305.5441.

[11]  P. Cassen,et al.  Contribution of tidal dissipation to lunar thermal history. , 1978 .

[12]  Peter Goldreich,et al.  Spin-orbit coupling in the solar system , 1966 .

[13]  J. Laskar,et al.  Mercury's capture into the 3/2 spin–orbit resonance including the effect of core–mantle friction , 2009, 0901.1843.

[14]  James G. Williams,et al.  Bodily tides near the 1:1 spin-orbit resonance: correction to Goldreich’s dynamical model , 2012, 1210.2923.

[15]  D. Sasselov,et al.  TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS , 2009, 0912.1907.

[16]  J. Wisdom Tidal dissipation at arbitrary eccentricity and obliquity , 2008 .

[17]  W. Henning,et al.  TIDAL HEATING IN MULTILAYERED TERRESTRIAL EXOPLANETS , 2014 .

[18]  R. Mardling,et al.  Long-term tidal evolution of short-period planets with companions , 2007, 0706.0224.

[19]  F. Rasio,et al.  EXTREME ORBITAL EVOLUTION FROM HIERARCHICAL SECULAR COUPLING OF TWO GIANT PLANETS , 2013, 1310.5048.

[20]  M. Ross,et al.  Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io , 1988 .

[21]  Austin,et al.  KEPLER'S FIRST ROCKY PLANET: KEPLER-10b , 2011, 1102.0605.

[22]  Richard Greenberg,et al.  Tidal Heating of Extrasolar Planets , 2008, 0803.0026.

[23]  M. Ross,et al.  Mercury's thermal history and the generation of its magnetic field , 1988 .

[24]  D. Eckhardt Passing through resonance: The excitation and dissipation of the lunar free libration in longitude , 1993 .

[25]  Cambridge,et al.  A Detailed Model Grid for Solid Planets from 0.1 through 100 Earth Masses , 2013, 1301.0818.

[26]  S. Karato,et al.  Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle , 1990 .

[27]  David E. Smith,et al.  Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos , 2005 .

[28]  J. Laskar,et al.  PUMPING THE ECCENTRICITY OF EXOPLANETS BY TIDAL EFFECT , 2011, 1111.5486.

[29]  M. Efroimsky Bodily tides near spin–orbit resonances , 2011, 1105.6086.

[30]  Andrew Szentgyorgyi,et al.  THE KEPLER-10 PLANETARY SYSTEM REVISITED BY HARPS-N: A HOT ROCKY WORLD AND A SOLID NEPTUNE-MASS PLANET , 2014, 1405.7881.

[31]  P. Hut Stability of tidal equilibrium , 1980 .

[32]  P. Cassen,et al.  Io - Energy constraints and plume volcanism , 1980 .

[33]  J. Anderson,et al.  Io's gravity field and interior structure , 2001 .

[34]  M. Efroimsky,et al.  TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE , 2012, 1209.1615.

[35]  K. Kinemuchi,et al.  KEPLER-10 c: A 2.2 EARTH RADIUS TRANSITING PLANET IN A MULTIPLE SYSTEM , 2011, 1105.4647.

[36]  H. Kjeldsen,et al.  ACCURATE PARAMETERS OF THE OLDEST KNOWN ROCKY-EXOPLANET HOSTING SYSTEM: KEPLER-10 REVISITED , 2013, 1311.6336.

[37]  D. Bambusi,et al.  Asymptotic stability of synchronous orbits for a gravitating viscoelastic sphere , 2010, 1012.4974.

[38]  J. Arlot,et al.  Strong tidal dissipation in Io and Jupiter from astrometric observations , 2009, Nature.

[39]  J. Margot,et al.  Tidal evolution of close binary asteroid systems , 2010, 1101.1500.

[40]  S. Solomon,et al.  The tides of Mercury and possible implications for its interior structure , 2014 .

[41]  Seattle,et al.  Tidal obliquity evolution of potentially habitable planets , 2011, 1101.2156.

[42]  M. Efroimsky TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS , 2011, 1105.3936.

[43]  O. Grasset,et al.  A STUDY OF THE ACCURACY OF MASS–RADIUS RELATIONSHIPS FOR SILICATE-RICH AND ICE-RICH PLANETS UP TO 100 EARTH MASSES , 2009, 0902.1640.

[44]  M. Efroimsky,et al.  TIDAL DISSIPATION IN A HOMOGENEOUS SPHERICAL BODY. I. METHODS , 2014, 1406.2376.

[45]  Spin-driven tidal pumping: tidally driven changes in planetary spin coupled with secular interactions between planets , 2013, 1309.6279.

[46]  P. Cassen,et al.  Melting of Io by Tidal Dissipation , 1979, Science.

[47]  P. Cassen,et al.  Tidal dissipation, orbital evolution, and the nature of Saturn's inner satellites , 1980 .