Spectral decomposition of internal gravity wave sea surface height in global models

Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space- and time-scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from three simulations of the HYbrid Coordinate Ocean Model (HYCOM) and two simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High-wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0.87cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from 9 in-situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high-wavenumbers (length scales smaller than ∼50km), especially in the higher resolution simulations. In the highest resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.

[1]  Richard D. Ray,et al.  Bottom pressure tides along a line in the southeast Atlantic Ocean and comparisons with satellite altimetry , 2010 .

[2]  L. Rainville,et al.  Energy Flux and Dissipation in Luzon Strait: Two Tales of Two Ridges , 2011 .

[3]  S. Jan,et al.  Numerical study of baroclinic tides in Luzon Strait , 2008 .

[4]  J. Nash,et al.  Observations of Internal Tides on the Oregon Continental Slope , 2011 .

[5]  G. Egbert,et al.  Tidal currents on the central Oregon shelf: Models, data, and assimilation , 2002 .

[6]  A. Wallcraft,et al.  Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides , 2012 .

[7]  D. Stammer Global Characteristics of Ocean Variability Estimated from Regional TOPEX/POSEIDON Altimeter Measurements , 1997 .

[8]  J. Nash,et al.  Hotspots of deep ocean mixing on the Oregon continental slope , 2007 .

[9]  E. Joseph Metzger,et al.  Concurrent Simulation of the Eddying General Circulation and Tides in a Global Ocean Model , 2010 .

[10]  Yongsheng Xu,et al.  The Effects of Altimeter Instrument Noise on the Estimation of the Wavenumber Spectrum of Sea Surface Height , 2012 .

[11]  Maria Flatau,et al.  The Navy Global Environmental Model , 2014 .

[12]  H. Sasaki,et al.  SSH Wavenumber Spectra in the North Pacific from a High-Resolution Realistic Simulation , 2012 .

[13]  Zhong‐Kuo Zhao,et al.  The Latitudinal Dependence of Shear and Mixing in the Pacific Transiting the Critical Latitude for PSI , 2013 .

[14]  B. Qiu,et al.  Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean , 2017, Nature Communications.

[15]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[16]  Alan J. Wallcraft,et al.  Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies , 2017 .

[17]  M. Hendershott,et al.  The Effects of Solid Earth Deformation on Global Ocean Tides , 1972 .

[18]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[19]  E. D’Asaro Wind Forced Internal Waves in the North Pacific and Sargasso Sea , 1984 .

[20]  R. Helber,et al.  Optimizing Internal Wave Drag in a Forward Barotropic Model with Semidiurnal Tides , 2015 .

[21]  F. Harris,et al.  Windows, Harmonic Analysis and the Discrete Fourier Transform , 1976 .

[22]  B. Arbic,et al.  Internal lee wave closures: Parameter sensitivity and comparison to observations , 2015 .

[23]  Walter H. F. Smith,et al.  Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings , 1997 .

[24]  L. Talley,et al.  Spatial and temporal variability of global ocean mixing inferred from Argo profiles , 2012 .

[25]  Gary T. Mitchum,et al.  Surface manifestation of internal tides in the deep ocean: observations from altimetry and island gauges , 1997 .

[26]  J. Nash,et al.  Internal bores and breaking internal tides on the Oregon continental slope , 2013 .

[27]  M. Edwards,et al.  An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses , 2008 .

[28]  A. Wallcraft,et al.  An evaluation of the barotropic and internal tides in a high‐resolution global ocean circulation model , 2012 .

[29]  A. Wallcraft,et al.  Skill tests of three‐dimensional tidal currents in a global ocean model: A look at the North Atlantic , 2012 .

[30]  A. Wallcraft,et al.  Toward an internal gravity wave spectrum in global ocean models , 2015 .

[31]  Paul D. Bates SWOT: The Surface Water and Ocean Topography Mission: Wide-Swath Altimetric Measurement of Water Elevation on Earth , 2012 .

[32]  Ernesto Rodriguez,et al.  SWOT: The Surface Water and Ocean Topography Mission. Wide- Swath Altimetric Elevation on Earth , 2012 .

[33]  Gary D. Egbert,et al.  Accuracy assessment of global barotropic ocean tide models , 2014 .

[34]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[35]  L. Rainville,et al.  Global Observations of Open-Ocean Mode-1 M2Internal Tides , 2016 .

[36]  T. Lee,et al.  ECCO2: High Resolution Global Ocean and Sea Ice Data Synthesis , 2008 .

[37]  D. Watts,et al.  Measurements of Sea Surface Height Variability in the Eastern South Atlantic from Pressure Sensor–Equipped Inverted Echo Sounders: Baroclinic and Barotropic Components , 2009 .

[38]  R. Glazman,et al.  Altimeter observations of baroclinic oceanic intertia–gravity wave turbulence , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  C. Wunsch,et al.  Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks , 2009 .

[40]  Zhong‐Kuo Zhao,et al.  Long-Range Propagation of the Semidiurnal Internal Tide from the Hawaiian Ridge , 2010 .

[41]  Robert Pinkel,et al.  Internal waves across the Pacific , 2007 .

[42]  R. Ray,et al.  M2 Internal Tides and Their Observed Wavenumber Spectra from Satellite Altimetry , 2016 .

[43]  Chris Garrett,et al.  Space-Time scales of internal waves , 1972 .

[44]  Alan J. Wallcraft,et al.  Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model , 2012 .

[45]  L. St. Laurent,et al.  Parameterizing tidal dissipation over rough topography , 2001 .

[46]  D. Menemenlis,et al.  On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations , 2010 .

[47]  Alan J. Wallcraft,et al.  Impact of Parameterized Internal Wave Drag on the Semidiurnal Energy Balance in a Global Ocean Circulation Model , 2016 .

[48]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[49]  Daniel E. Frye,et al.  A MOORED PROFILING INSTRUMENT , 1999 .

[50]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[51]  Raffaele Ferrari,et al.  Interpreting Energy and Tracer Spectra of Upper-Ocean Turbulence in the Submesoscale Range (1–200 km) , 2013 .

[52]  A. Wallcraft,et al.  Skill testing a three‐dimensional global tide model to historical current meter records , 2013 .

[53]  Dimitris Menemenlis,et al.  Mesoscale to submesoscale wavenumber spectra in Drake Passage , 2016 .

[54]  R. Ponte,et al.  Long-Period Tides in an Atmospherically Driven, Stratified Ocean , 2015 .

[55]  R. W. Stewart Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel , 1982 .

[56]  G. Dibarboure,et al.  Do Altimeter Wavenumber Spectra Agree with the Interior or Surface Quasigeostrophic Theory , 2008 .

[57]  H. Simmons,et al.  Semidiurnal internal tide energy fluxes and their variability in a Global Ocean Model and moored observations , 2017 .

[58]  Yves Soufflet,et al.  Effective resolution in ocean models , 2014 .

[59]  Eric P. Chassignet,et al.  US GODAE: Global Ocean Prediction with the Hybrid Coordinate Ocean Model (HYCOM) , 2004 .

[60]  A. Wallcraft,et al.  Indirect evidence for substantial damping of low-mode internal tides in the open ocean , 2015 .

[61]  D. Menemenlis,et al.  Seasonality of submesoscale dynamics in the Kuroshio Extension , 2016 .

[62]  A. Wallcraft,et al.  On Improving the Accuracy of the M-2 Barotropic Tides Embedded in a High-Resolution Global Ocean Circulation Model , 2016 .

[63]  Zhong‐Kuo Zhao,et al.  Parametric Subharmonic Instability of the Internal Tide at 29 8 N , 2013 .