Random Sparse Linear Systems Observed Via Arbitrary Channels: A Decoupling Principle
暂无分享,去创建一个
[1] Dongning Guo,et al. Asymptotic Mean-Square Optimality of Belief Propagation for Sparse Linear Systems , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.
[2] David Saad,et al. Improved message passing for inference in densely connected systems , 2005, ArXiv.
[3] J. Boutros,et al. Iterative multiuser joint decoding: unified framework and asymptotic analysis , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[4] Rüdiger L. Urbanke,et al. The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.
[5] Toshiyuki Tanaka,et al. A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors , 2002, IEEE Trans. Inf. Theory.
[6] Andrea Montanari,et al. Analysis of Belief Propagation for Non-Linear Problems: The Example of CDMA (or: How to Prove Tanaka's Formula) , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.
[7] H. Vincent Poor,et al. Density evolution for asymmetric memoryless channels , 2005, IEEE Transactions on Information Theory.
[8] Sergio Verdú,et al. Randomly spread CDMA: asymptotics via statistical physics , 2005, IEEE Transactions on Information Theory.
[9] Toshiyuki Tanaka. Replica Analysis of Performance Loss Due to Separation of Detection and Decoding in CDMA Channels , 2006, 2006 IEEE International Symposium on Information Theory.
[10] Y. Kabashima. A CDMA multiuser detection algorithm on the basis of belief propagation , 2003 .
[11] Masato Okada,et al. Approximate belief propagation, density evolution, and statistical neurodynamics for CDMA multiuser detection , 2005, IEEE Transactions on Information Theory.
[12] Dongning Guo,et al. Belief propagation is asymptoticly equivalent to MAP detection for sparse linear systems , 2006 .
[13] Simon Litsyn,et al. On ensembles of low-density parity-check codes: Asymptotic distance distributions , 2002, IEEE Trans. Inf. Theory.