Piezo-driven sample rotation system with ultra-low electron temperature.

Piezo-driven rotator is convenient for tilted magnetic field experiments due to its precise angle control. However, the rotator itself and the sample mounted on it are difficult to be cooled down because of extra heat leaks and presumably bad thermal contacts from the piezo. Here, we report a piezo-driven sample rotation system designed for ultra-low temperature environment. The sample, as well as the rotating sample holder, can be cooled to as low as 25 mK by customized thermal links and thermal contacts. More importantly, the electron temperature in the electrical transport measurements can also be cooled down to 25 mK with the help of home-made filters. To demonstrate the application of our rotation system at ultra-low electron temperature, a measurement revealing tilt-induced localization and delocalization in the second Landau level of two-dimensional electron gas is provided.

[1]  M. W. Johnson,et al.  Phase transitions in a programmable quantum spin glass simulator , 2018, Science.

[2]  K. West,et al.  Electron–electron interactions and the paired-to-nematic quantum phase transition in the second Landau level , 2018, Nature Communications.

[3]  K. West,et al.  Finite-temperature behavior in the second Landau level of the two-dimensional electron gas , 2018, Physical Review B.

[4]  I. Sodemann,et al.  A cascade of phase transitions in an orbitally mixed half-filled Landau level , 2018, Science Advances.

[5]  Mark W. Johnson,et al.  Observation of topological phenomena in a programmable lattice of 1,800 qubits , 2018, Nature.

[6]  Liuqi Yu,et al.  Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot , 2017, Nature Communications.

[7]  S. Masuda,et al.  Quantum-circuit refrigerator , 2016, Nature Communications.

[8]  M. Kastner,et al.  Competing ν = 5/2 fractional quantum Hall states in confined geometry , 2016, Proceedings of the National Academy of Sciences.

[9]  Jian-Wei Pan,et al.  Emulating Anyonic Fractional Statistical Behavior in a Superconducting Quantum Circuit. , 2016, Physical review letters.

[10]  Spatially resolved breakdown in reentrant quantum Hall states , 2015, 1512.03110.

[11]  K. Ensslin,et al.  Transport Spectroscopy of Confined Fractional Quantum Hall Systems , 2015 .

[12]  M. Kawasaki,et al.  Even-denominator fractional quantum Hall physics in ZnO , 2015, Nature Physics.

[13]  M. García-Hernández,et al.  Three axis vector magnet set-up for cryogenic scanning probe microscopy. , 2015, The Review of scientific instruments.

[14]  M. Franz,et al.  Colloquium : Majorana fermions in nuclear, particle, and solid-state physics , 2014, 1403.4976.

[15]  R. Du,et al.  Recent Experimental Progress of Fractional Quantum Hall Effect: 5/2 Filling State and Graphene , 2014, 1501.00073.

[16]  A. Gossard,et al.  Silver-epoxy microwave filters and thermalizers for millikelvin experiments , 2014, 1403.6205.

[17]  T. Oosterkamp,et al.  Atomic resolution scanning tunneling microscopy in a cryogen free dilution refrigerator at 15 mK. , 2013, The Review of scientific instruments.

[18]  M. Manfra Molecular Beam Epitaxy of Ultra-High-Quality AlGaAs/GaAs Heterostructures: Enabling Physics in Low-Dimensional Electronic Systems , 2013, 1309.2717.

[19]  R. Willett The quantum Hall effect at 5/2 filling factor , 2013, Reports on progress in physics. Physical Society.

[20]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[21]  D. Goldhaber-Gordon,et al.  Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator. , 2012, The Review of scientific instruments.

[22]  F. Casola,et al.  A two-axis goniometer for low-temperature nuclear magnetic resonance measurements on single crystals. , 2012, The Review of scientific instruments.

[23]  K. West,et al.  Spin polarization of the ν=12/5 fractional quantum Hall state , 2012 .

[24]  Y. Oreg,et al.  Evidence of Majorana fermions in an Al - InAs nanowire topological superconductor , 2012, 1205.7073.

[25]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[26]  K. West,et al.  Enhancement of the ν = 5/2 fractional quantum Hall state in a small in-plane magnetic field. , 2012, Physical review letters.

[27]  K. West,et al.  Collective nature of the reentrant integer quantum Hall states in the second Landau level. , 2011, Physical review letters.

[28]  K. West,et al.  Evolution of the 7/2 fractional quantum Hall state in two-subband systems. , 2011, Physical review letters.

[29]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[30]  A. Micolich,et al.  Piezoelectric rotator for studying quantum effects in semiconductor nanostructures at high magnetic fields and low temperatures. , 2010, The Review of scientific instruments.

[31]  S. Hannahs,et al.  The National High Magnetic Field Laboratory , 2010 .

[32]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[33]  P. Hayden,et al.  Contrasting behavior of the 5/2 and 7/3 fractional quantum Hall effect in a tilted field. , 2008, Physical review letters.

[34]  P. Hayden,et al.  Intrinsic gap of the nu=5/2 fractional quantum Hall state. , 2008, Physical Review Letters.

[35]  A V Ustinov,et al.  Improved powder filters for qubit measurements. , 2008, The Review of scientific instruments.

[36]  James R. Rozen,et al.  50 Ω characteristic impedance low-pass metal powder filters , 2007 .

[37]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[38]  K. West,et al.  Tilt-induced localization and delocalization in the second Landau level. , 2004, Physical review letters.

[39]  K. West,et al.  Electron correlation in the second Landau level: a competition between many nearly degenerate quantum phases. , 2004, Physical review letters.

[40]  J. R. Miller,et al.  The NHMFL 45-T hybrid magnet system: past, present, and future , 2003 .

[41]  D. Tsui,et al.  SAMPLE COOLING AND ROTATION AT ULTRA-LOW TEMPERATURES AND HIGH MAGNETIC FIELDS , 2002 .

[42]  K. West,et al.  Insulating and fractional quantum hall states in the first excited Landau level. , 2001, Physical review letters.

[43]  Y. Maeno,et al.  Piezoelectrically driven rotator for use in high magnetic fields at low temperatures , 2001 .

[44]  T. Murphy,et al.  Very low friction rotator for use at low temperatures and high magnetic fields , 1999 .

[45]  M. Tuominen,et al.  Precision sample rotator with active angular position readout for a superconducting quantum interference device susceptometer , 1998 .

[46]  Y. Sakamoto,et al.  Attenuation of microwave filters for single-electron tunneling experiments , 1997 .

[47]  West,et al.  Fractional quantum Hall effect around nu =3/2: Composite fermions with a spin. , 1995, Physical review letters.

[48]  Alexander B. Zorin,et al.  The thermocoax cable as the microwave frequency filter for single electron circuits , 1995 .

[49]  West,et al.  Evidence for a spin transition in the nu =2/3 fractional quantum Hall effect. , 1990, Physical review. B, Condensed matter.

[50]  K. West,et al.  Electron mobilities exceeding 107 cm2/V s in modulation‐doped GaAs , 1989 .

[51]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[52]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[53]  Clarke,et al.  Experimental tests for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction. , 1987, Physical review. B, Condensed matter.

[54]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[55]  D. K. Wagner A 0.6 T omnidirectional superconducting magnet system , 1974 .

[56]  W. Reed,et al.  Low Temperature Sample Holder Providing Two Degrees of Freedom in a Solenoid , 1965 .