SYK models and SYK-like tensor models with global symmetry

[1]  H. Erbin,et al.  Conformality of 1/N corrections in Sachdev-Ye-Kitaev-like models , 2017, Physical Review D.

[2]  F. Ferrari The large $D$ limit of planar diagrams , 2017, Annales de l’Institut Henri Poincaré D.

[3]  E. Witten An SYK-like model without disorder , 2016, Journal of Physics A: Mathematical and Theoretical.

[4]  G. Travaglini,et al.  All rational one-loop Einstein-Yang-Mills amplitudes at four points , 2018, Journal of High Energy Physics.

[5]  I. A. Monroy,et al.  Search for excited Bc+ states , 2017, 1712.04094.

[6]  S. Wadia,et al.  Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models , 2017, Journal of High Energy Physics.

[7]  E. Witten,et al.  More on supersymmetric and 2d analogs of the SYK model , 2017, Journal of High Energy Physics.

[8]  D. Gossman,et al.  Gauge invariants, correlators and holography in bosonic and fermionic tensor models , 2017, 1707.01455.

[9]  K. Bulycheva A note on the SYK model with complex fermions , 2017, Journal of High Energy Physics.

[10]  C. Peng,et al.  Correlators in the N=2$$ \mathcal{N}=2 $$ supersymmetric SYK model , 2017, 1706.06078.

[11]  Junggi Yoon Supersymmetric SYK model: bi-local collective superfield/supermatrix formulation , 2017, Journal of High Energy Physics.

[12]  R. Gurau The 1/N Expansion of Tensor Models with Two Symmetric Tensors , 2017, Communications in Mathematical Physics.

[13]  C. Krishnan,et al.  Towards a finite-N hologram , 2017, 1706.05364.

[14]  A. Mironov,et al.  Correlators in tensor models from character calculus , 2017, 1706.03667.

[15]  T. Wettig,et al.  Complete random matrix classification of SYK models with N$$ \mathcal{N} $$ = 0, 1 and 2 supersymmetry , 2017, 1706.03044.

[16]  S. Rey,et al.  Orthogonal bases of invariants in tensor models , 2017, 1706.02667.

[17]  I. Klebanov,et al.  On large N limit of symmetric traceless tensor models , 2017, Journal of High Energy Physics.

[18]  R. Gurau The ı ϵ prescription in the SYK model , 2017, 1705.08581.

[19]  Anosh Joseph,et al.  Abelian tensor models on the lattice , 2017, 1705.01930.

[20]  P. Narayan,et al.  SYK-like tensor models on the lattice , 2017, 1705.01554.

[21]  A. Mironov,et al.  Ward identities and combinatorics of rainbow tensor models , 2017, 1704.08648.

[22]  Sumit R. Das,et al.  Three dimensional view of the SYK/AdS duality , 2017, 1704.07208.

[23]  Zhenbin Yang,et al.  Diving into traversable wormholes , 2017, 1704.05333.

[24]  C. Peng Vector models and generalized SYK models , 2017, 1704.04223.

[25]  C. Krishnan,et al.  Random matrices and holographic tensor models , 2017, Journal of High Energy Physics.

[26]  A. Mironov,et al.  Rainbow tensor model with enhanced symmetry and extreme melonic dominance , 2017, 1703.04983.

[27]  H. Yao,et al.  Solvable SYK models in higher dimensions: a new type of many-body localization transition , 2017 .

[28]  Hong Yao,et al.  Solvable Sachdev-Ye-Kitaev Models in Higher Dimensions: From Diffusion to Many-Body Localization. , 2017, Physical review letters.

[29]  L. Lionni,et al.  Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders , 2017, 1702.06944.

[30]  P. Narayan,et al.  Comments on the random Thirring model , 2017, 1702.05105.

[31]  S. Wadia,et al.  Virasoro coadjoint orbits of SYK/tensor-models and emergent two-dimensional quantum gravity , 2017 .

[32]  R. Gurau Quenched equals annealed at leading order in the colored SYK model , 2017, 1702.04228.

[33]  Tian-Jun Li,et al.  Supersymmetric SYK model and random matrix theory , 2017, 1702.01738.

[34]  J. Maldacena,et al.  Supersymmetric Sachdev-Ye-Kitaev models , 2017 .

[35]  G. Turiaci,et al.  Towards a 2d QFT analog of the SYK model , 2017, 1701.00528.

[36]  A. Georges,et al.  Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography , 2016, 1612.00849.

[37]  I. Klebanov,et al.  Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models , 2016, 1611.08915.

[38]  R. Gurau The complete 1/N expansion of a SYK–like tensor model , 2016, 1611.04032.

[39]  E. Altman,et al.  Solvable model for a dynamical quantum phase transition from fast to slow scrambling , 2016, 1610.04619.

[40]  C. Krishnan,et al.  Quantum chaos and holographic tensor models , 2016, Journal of High Energy Physics.

[41]  P. Narayan,et al.  Higher dimensional generalizations of the SYK model , 2016, Journal of High Energy Physics.

[42]  D. Gross,et al.  A generalization of Sachdev-Ye-Kitaev , 2016, 1610.01569.

[43]  X. Qi,et al.  Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models , 2016, 1609.07832.

[44]  A. Jevicki,et al.  Bi-local holography in the SYK model: perturbations , 2016, 1608.07567.

[45]  J. Maldacena,et al.  Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space , 2016, 1606.01857.

[46]  J. Maldacena,et al.  Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.

[47]  Junggi Yoon,et al.  Bi-local holography in the SYK model , 2016, 1603.06246.

[48]  Eric Perlmutter Bounding the space of holographic CFTs with chaos , 2016, 1602.08272.

[49]  J. Polchinski,et al.  The spectrum in the Sachdev-Ye-Kitaev model , 2016, 1601.06768.

[50]  Adrian Tanasa,et al.  O(N) Random Tensor Models , 2015, 1512.06718.

[51]  Kenta M. Suzuki,et al.  Thermofield duality for higher spin Rindler Gravity , 2015, 1508.07956.

[52]  S. Sachdev Bekenstein-Hawking Entropy and Strange Metals , 2015, 1506.05111.

[53]  A. Jevicki,et al.  Bulk from bi-locals in Thermo field CFT , 2015, 1503.08484.

[54]  M. Dorigo,et al.  Differential branching fraction and angular analysis of $\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-$ decays , 2015, 1503.07138.

[55]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[56]  A. Jevicki,et al.  Canonical formulation of O(N) vector/higher spin correspondence , 2014, 1408.4800.

[57]  A. Jevicki,et al.  Holography as a gauge phenomenon in Higher Spin duality , 2014, 1408.1255.

[58]  A. Jevicki,et al.  1/N and loop corrections in higher spin AdS 4 /CFT 3 duality , 2014, 1401.3318.

[59]  G. Schaeffer,et al.  Regular colored graphs of positive degree , 2013, 1307.5279.

[60]  Valentin Bonzom,et al.  Random tensor models in the large N limit: Uncoloring the colored tensor models , 2012, 1202.3637.

[61]  J. Ryan,et al.  Colored Tensor Models - a Review , 2011, 1109.4812.

[62]  Razvan Gurau,et al.  The Complete 1/N Expansion of Colored Tensor Models in Arbitrary Dimension , 2011, 1102.5759.

[63]  R. Gurau Universality for Random Tensors , 2011, 1111.0519.

[64]  Vincent Rivasseau,et al.  The 1/N expansion of colored tensor models in arbitrary dimension , 2011, 1101.4182.

[65]  R. Gurau The 1/N Expansion of Colored Tensor Models , 2010, 1011.2726.

[66]  A. Jevicki,et al.  AdS 4 / CFT 3 construction from collective fields , 2010, 1008.0633.

[67]  Razvan Gurau,et al.  Colored Group Field Theory , 2009, 0907.2582.

[68]  Sumit R. Das,et al.  Large-N collective fields and holography , 2003, hep-th/0304093.

[69]  A. Romeo,et al.  Casimir effect for scalar fields under Robin boundary conditions on plates , 2000, hep-th/0007242.

[70]  Rodrigues,et al.  Systematic 1/N corrections for bosonic and fermionic vector models without auxiliary fields. , 1996, Physical review. D, Particles and fields.

[71]  Ye,et al.  Gapless spin-fluid ground state in a random quantum Heisenberg magnet. , 1992, Physical review letters.

[72]  B. Sakita,et al.  The Quantum Collective Field Method and Its Application to the Planar Limit , 1980 .

[73]  J. S. Dowker,et al.  Finite temperature field theory with boundaries: Stress tensor and surface action renormalisation , 1980 .

[74]  T. Wettig,et al.  Complete random matrix classification of SYK models with N = 0 , 1 and 2 supersymmetry , 2022 .