Scale Invariant Metrics of Volumetric Datasets
暂无分享,去创建一个
[1] Jean-Michel Morel,et al. Integral and local affine invariant parameter and application to shape recognition , 1994, Proceedings of 12th International Conference on Pattern Recognition.
[2] P. Bérard,et al. Embedding Riemannian manifolds by their heat kernel , 1994 .
[3] A. Ben Hamza,et al. Geodesic matching of triangulated surfaces , 2006, IEEE Transactions on Image Processing.
[4] Ron Kimmel,et al. Affine Invariant Geometry for Non-rigid Shapes , 2014, International Journal of Computer Vision.
[5] Leonidas J. Guibas,et al. One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.
[6] Ron Goldman,et al. Curvature formulas for implicit curves and surfaces , 2005, Comput. Aided Geom. Des..
[7] Sen Wang,et al. High resolution tracking of non-rigid 3D motion of densely sampled data using harmonic maps , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.
[8] Alfred M. Bruckstein,et al. Similarity-invariant signatures for partially occluded planar shapes , 1992, International Journal of Computer Vision.
[9] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[10] J A Sethian,et al. Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[11] T. Funkhouser,et al. Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.
[12] Ramesh Raskar,et al. Evaluating Local Contractions from Large Deformations Using Affine Invariant Spectral Geometry , 2014, STACOM.
[13] Ron Kimmel,et al. From High Energy Physics to Low Level Vision , 1997, Scale-Space.
[14] Ron Kimmel,et al. Scale Invariant Geometry for Nonrigid Shapes , 2013, SIAM J. Imaging Sci..
[15] Stéphane Lafon,et al. Diffusion maps , 2006 .
[16] Ann B. Lee,et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[17] Jean-Michel Morel,et al. ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..
[18] Luc Van Gool,et al. Recognition of planar shapes under affine distortion , 2005, International Journal of Computer Vision.
[19] Tony Lindeberg,et al. Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.
[20] Guillermo Sapiro,et al. A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.
[21] I. Holopainen. Riemannian Geometry , 1927, Nature.
[22] Alexander M. Bronstein,et al. Three-Dimensional Face Recognition , 2005, International Journal of Computer Vision.
[23] Luc Van Gool,et al. Foundations of semi-differential invariants , 2005, International Journal of Computer Vision.
[24] Alexander M. Bronstein,et al. Expression-invariant face recognition via spherical embedding , 2005, IEEE International Conference on Image Processing 2005.
[25] Ron Kimmel,et al. Bending invariant representations for surfaces , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
[26] Ehud Rivlin,et al. Scale space semi-local invariants , 1997, Image Vis. Comput..
[27] Alexander M. Bronstein,et al. Affine-Invariant Photometric Heat Kernel Signatures , 2012, 3DOR@Eurographics.
[28] Guillermo Sapiro,et al. O(N) implementation of the fast marching algorithm , 2006, Journal of Computational Physics.
[29] Ron Kimmel,et al. Texture Mapping via Spherical Multi-dimensional Scaling , 2005, Scale-Space.
[30] Matthijs C. Dorst. Distinctive Image Features from Scale-Invariant Keypoints , 2011 .
[31] A. Bronstein,et al. Shape Google : a computer vision approach to invariant shape retrieval , 2009 .
[32] Luc Van Gool,et al. SURF: Speeded Up Robust Features , 2006, ECCV.
[33] Leonidas J. Guibas,et al. A concise and provably informative multi-scale signature based on heat diffusion , 2009 .
[34] Alfred M. Bruckstein,et al. Invariant signatures for planar shape recognition under partial occlusion , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.
[35] Alexander M. Bronstein,et al. Equi-affine Invariant Geometry for Shape Analysis , 2013, Journal of Mathematical Imaging and Vision.
[36] Edwin R. Hancock,et al. Commute Times, Discrete Green's Functions and Graph Matching , 2005, ICIAP.
[37] Ron Kimmel,et al. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[38] Mark W. Woolrich,et al. Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.