The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects

[1]  N. Thomas,et al.  Thermal inertia and roughness of the nucleus of comet 67P/Churyumov–Gerasimenko from MIRO and VIRTIS observations , 2018, Astronomy & Astrophysics.

[2]  Maria Teresa Capria,et al.  The SSDC contribution to the improvement of knowledge by means of 3D data projections of minor bodies , 2018, Advances in Space Research.

[3]  T. Encrenaz,et al.  Analysis of observations of the Imhotep region of 67P/C-G performed by MIRO/Rosetta in 2014 and 2016 and derived constraints on the close subsurface properties , 2017 .

[4]  S. Erard,et al.  Laboratory simulations of the Vis-NIR spectra of comet 67P using sub-µm sized cosmochemical analogues , 2017, 1711.09746.

[5]  S. Erard,et al.  How pristine is the interior of the comet 67P/Churyumov-Gerasimenko? , 2017 .

[6]  A. Zinzi,et al.  Photometric behaviour of 67P/Churyumov-Gerasimenko and analysis of its pre-perihelion diurnal variations , 2017 .

[7]  S. Debei,et al.  Rosetta’s comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature , 2016, Science.

[8]  Giuseppe Piccioni,et al.  The global surface composition of 67P/Churyumov–Gerasimenko nucleus by Rosetta/VIRTIS. II) Diurnal and seasonal variability , 2016 .

[9]  S. Erard,et al.  The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov-Gerasimenko: spectral analysis , 2016, 1612.02231.

[10]  P. Drossart,et al.  Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko - as observed by Rosetta OSIRIS and VIRTIS instruments , 2016 .

[11]  S. Debei,et al.  The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations , 2016 .

[12]  S. Erard,et al.  Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer , 2016 .

[13]  S. Erard,et al.  The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase , 2016, 1602.09098.

[14]  U. Fink,et al.  Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko , 2016, Nature.

[15]  Giampiero Naletto,et al.  Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko Stereo-photogrammetric analysis of Rosetta/OSIRIS image data , 2015 .

[16]  M. T. Capria,et al.  Photometric properties of comet 67P/Churyumov-Gerasimenko from VIRTIS-M onboard Rosetta , 2015 .

[17]  S. Debei,et al.  Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko , 2015 .

[18]  H. Keller,et al.  MIRO observations of subsurface temperatures of the nucleus of 67P/Churyumov-Gerasimenko , 2015 .

[19]  M. Banaszkiewicz,et al.  Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[20]  S. Debei,et al.  Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse , 2015, Nature.

[21]  S. Debei,et al.  Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft , 2015, 1505.06888.

[22]  J. Bandfield,et al.  Interpretation of thermal emission. I. The effect of roughness for spatially resolved atmosphereless bodies , 2015 .

[23]  T. Encrenaz,et al.  Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[24]  S. Debei,et al.  The morphological diversity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[25]  U. Fink,et al.  The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.

[26]  S. Debei,et al.  On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[27]  H. Rickman,et al.  Surface roughness and three-dimensional heat conduction in thermophysical models , 2014 .

[28]  C. Russell,et al.  Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR , 2014 .

[29]  P. Michel,et al.  Thermal fatigue as the origin of regolith on small asteroids , 2014, Nature.

[30]  M. Belton,et al.  The temperature, thermal inertia, roughness and color of the nuclei of Comets 103P/Hartley 2 and 9P/Tempel 1 , 2013 .

[31]  Shane Byrne,et al.  Rates of temperature change of airless landscapes and implications for thermal stress weathering , 2012 .

[32]  Sukhan Lee,et al.  Interpretation of combined infrared, submillimeter, and millimeter thermal flux data obtained during the Rosetta fly-by of Asteroid (21) Lutetia , 2012 .

[33]  J. Blum,et al.  Dust release and tensile strength of the non-volatile layer of cometary nuclei , 2011, 1111.0768.

[34]  D Tiphene,et al.  The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS , 2011, Science.

[35]  J. Blum,et al.  Outgassing of icy bodies in the Solar System – I. The sublimation of hexagonal water ice through dust layers , 2011, 1101.2518.

[36]  H. Keller,et al.  Gas Transport in the Near-Surface Porous Layers of a Cometary Nucleus , 2011, 1101.2525.

[37]  M. T. Capria,et al.  SEASONAL EFFECTS ON COMET NUCLEI EVOLUTION: ACTIVITY, INTERNAL STRUCTURE, AND DUST MANTLE FORMATION , 2010 .

[38]  A. Coradini,et al.  The activity of Main Belt comets , 2010, 1111.5699.

[39]  H. Rickman,et al.  Physical properties of morphological units on Comet 9P/Tempel 1 derived from near-IR Deep Impact spectra , 2009 .

[40]  T. Encrenaz,et al.  MIRO: Microwave Instrument for Rosetta Orbiter , 2007 .

[41]  W. Delamere,et al.  Surface temperature of the nucleus of Comet 9P/Tempel 1 , 2007 .

[42]  U. Fink,et al.  Virtis: An Imaging Spectrometer for the Rosetta Mission , 2007 .

[43]  S. Debei,et al.  OSIRIS – The Scientific Camera System Onboard Rosetta , 2007 .

[44]  J. Lagerros THERMAL PHYSICS OF ASTEROIDS. III. IRREGULAR SHAPES AND ALBEDO VARIEGATIONS , 1997 .

[45]  E. Kührt,et al.  Theoretical interpretation of infrared measurements at Deimos in the framework of crater radiation , 1990 .

[46]  S. Squyres,et al.  Temperatures within comet nuclei. , 1985, Journal of geophysical research.

[47]  Randolph L. Kirk,et al.  Short-wavelength infrared (1.3–2.6 μm) observations of the nucleus of Comet 19P/Borrelly , 2004 .

[48]  Angioletta Coradini,et al.  VIRTIS: The imaging spectrometer of the Rosetta mission , 1999 .

[49]  J. Lagerros THERMAL PHYSICS OF ASTEROIDS. IV. THERMAL INFRARED BEAMING , 1998 .

[50]  C. H. Acton,et al.  Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .

[51]  K. Manos In the Southern Hemisphere , 1993 .

[52]  Jean-Pierre Bibring,et al.  Temperature and size of the nucleus of comet P/Halley deduced from IKS infrared Vega 1 measurements , 1988 .

[53]  G. Lothian,et al.  Spectral Analysis , 1971, Nature.