The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects
暂无分享,去创建一个
M. T. Capria | E. Palomba | A. Longobardo | T. McCord | F. Capaccioni | S. Fonti | G. Filacchione | P. Cerroni | G. Bellucci | J. Vincent | S. Mottola | E. Kührt | J. Benkhoff | G. Arnold | C. Leyrat | A. Raponi | M. Ciarniello | D. Bockelée-Morvan | D. Kappel | J. Combe | F. Tosi | M. Formisano | M. D. De Sanctis | S. Erard | A. Migliorini | V. Orofino | D. Despan | M. Barucci | F. Mancarella | G. Piccioni | B. Rousseau | A. Zinzi | M. Hofstadter | B. Schmitt
[1] N. Thomas,et al. Thermal inertia and roughness of the nucleus of comet 67P/Churyumov–Gerasimenko from MIRO and VIRTIS observations , 2018, Astronomy & Astrophysics.
[2] Maria Teresa Capria,et al. The SSDC contribution to the improvement of knowledge by means of 3D data projections of minor bodies , 2018, Advances in Space Research.
[3] T. Encrenaz,et al. Analysis of observations of the Imhotep region of 67P/C-G performed by MIRO/Rosetta in 2014 and 2016 and derived constraints on the close subsurface properties , 2017 .
[4] S. Erard,et al. Laboratory simulations of the Vis-NIR spectra of comet 67P using sub-µm sized cosmochemical analogues , 2017, 1711.09746.
[5] S. Erard,et al. How pristine is the interior of the comet 67P/Churyumov-Gerasimenko? , 2017 .
[6] A. Zinzi,et al. Photometric behaviour of 67P/Churyumov-Gerasimenko and analysis of its pre-perihelion diurnal variations , 2017 .
[7] S. Debei,et al. Rosetta’s comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature , 2016, Science.
[8] Giuseppe Piccioni,et al. The global surface composition of 67P/Churyumov–Gerasimenko nucleus by Rosetta/VIRTIS. II) Diurnal and seasonal variability , 2016 .
[9] S. Erard,et al. The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov-Gerasimenko: spectral analysis , 2016, 1612.02231.
[10] P. Drossart,et al. Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko - as observed by Rosetta OSIRIS and VIRTIS instruments , 2016 .
[11] S. Debei,et al. The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations , 2016 .
[12] S. Erard,et al. Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer , 2016 .
[13] S. Erard,et al. The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase , 2016, 1602.09098.
[14] U. Fink,et al. Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko , 2016, Nature.
[15] Giampiero Naletto,et al. Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko Stereo-photogrammetric analysis of Rosetta/OSIRIS image data , 2015 .
[16] M. T. Capria,et al. Photometric properties of comet 67P/Churyumov-Gerasimenko from VIRTIS-M onboard Rosetta , 2015 .
[17] S. Debei,et al. Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko , 2015 .
[18] H. Keller,et al. MIRO observations of subsurface temperatures of the nucleus of 67P/Churyumov-Gerasimenko , 2015 .
[19] M. Banaszkiewicz,et al. Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko , 2015, Science.
[20] S. Debei,et al. Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse , 2015, Nature.
[21] S. Debei,et al. Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft , 2015, 1505.06888.
[22] J. Bandfield,et al. Interpretation of thermal emission. I. The effect of roughness for spatially resolved atmosphereless bodies , 2015 .
[23] T. Encrenaz,et al. Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.
[24] S. Debei,et al. The morphological diversity of comet 67P/Churyumov-Gerasimenko , 2015, Science.
[25] U. Fink,et al. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.
[26] S. Debei,et al. On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.
[27] H. Rickman,et al. Surface roughness and three-dimensional heat conduction in thermophysical models , 2014 .
[28] C. Russell,et al. Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR , 2014 .
[29] P. Michel,et al. Thermal fatigue as the origin of regolith on small asteroids , 2014, Nature.
[30] M. Belton,et al. The temperature, thermal inertia, roughness and color of the nuclei of Comets 103P/Hartley 2 and 9P/Tempel 1 , 2013 .
[31] Shane Byrne,et al. Rates of temperature change of airless landscapes and implications for thermal stress weathering , 2012 .
[32] Sukhan Lee,et al. Interpretation of combined infrared, submillimeter, and millimeter thermal flux data obtained during the Rosetta fly-by of Asteroid (21) Lutetia , 2012 .
[33] J. Blum,et al. Dust release and tensile strength of the non-volatile layer of cometary nuclei , 2011, 1111.0768.
[34] D Tiphene,et al. The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS , 2011, Science.
[35] J. Blum,et al. Outgassing of icy bodies in the Solar System – I. The sublimation of hexagonal water ice through dust layers , 2011, 1101.2518.
[36] H. Keller,et al. Gas Transport in the Near-Surface Porous Layers of a Cometary Nucleus , 2011, 1101.2525.
[37] M. T. Capria,et al. SEASONAL EFFECTS ON COMET NUCLEI EVOLUTION: ACTIVITY, INTERNAL STRUCTURE, AND DUST MANTLE FORMATION , 2010 .
[38] A. Coradini,et al. The activity of Main Belt comets , 2010, 1111.5699.
[39] H. Rickman,et al. Physical properties of morphological units on Comet 9P/Tempel 1 derived from near-IR Deep Impact spectra , 2009 .
[40] T. Encrenaz,et al. MIRO: Microwave Instrument for Rosetta Orbiter , 2007 .
[41] W. Delamere,et al. Surface temperature of the nucleus of Comet 9P/Tempel 1 , 2007 .
[42] U. Fink,et al. Virtis: An Imaging Spectrometer for the Rosetta Mission , 2007 .
[43] S. Debei,et al. OSIRIS – The Scientific Camera System Onboard Rosetta , 2007 .
[44] J. Lagerros. THERMAL PHYSICS OF ASTEROIDS. III. IRREGULAR SHAPES AND ALBEDO VARIEGATIONS , 1997 .
[45] E. Kührt,et al. Theoretical interpretation of infrared measurements at Deimos in the framework of crater radiation , 1990 .
[46] S. Squyres,et al. Temperatures within comet nuclei. , 1985, Journal of geophysical research.
[47] Randolph L. Kirk,et al. Short-wavelength infrared (1.3–2.6 μm) observations of the nucleus of Comet 19P/Borrelly , 2004 .
[48] Angioletta Coradini,et al. VIRTIS: The imaging spectrometer of the Rosetta mission , 1999 .
[49] J. Lagerros. THERMAL PHYSICS OF ASTEROIDS. IV. THERMAL INFRARED BEAMING , 1998 .
[50] C. H. Acton,et al. Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .
[51] K. Manos. In the Southern Hemisphere , 1993 .
[52] Jean-Pierre Bibring,et al. Temperature and size of the nucleus of comet P/Halley deduced from IKS infrared Vega 1 measurements , 1988 .
[53] G. Lothian,et al. Spectral Analysis , 1971, Nature.