Amelioration of Bacterial Genomes: Rates of Change and Exchange

[1]  J R Roth,et al.  Selfish operons: horizontal transfer may drive the evolution of gene clusters. , 1996, Genetics.

[2]  H. Ochman,et al.  Identification of a pathogenicity island required for Salmonella survival in host cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Barinaga A Shared Strategy for Virulence , 1996, Science.

[4]  R. Doolittle,et al.  Determining Divergence Times of the Major Kingdoms of Living Organisms with a Protein Clock , 1996, Science.

[5]  J R Roth,et al.  Evolution of coenzyme B12 synthesis among enteric bacteria: evidence for loss and reacquisition of a multigene complex. , 1996, Genetics.

[6]  J. Roth,et al.  The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli , 1995, Journal of bacteriology.

[7]  B. Wanner,et al.  Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2 , 1995, Journal of bacteriology.

[8]  H. Ochman,et al.  Heterogeneity of genome sizes among natural isolates of Escherichia coli , 1995, Journal of bacteriology.

[9]  H. Ochman,et al.  Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of Salmonella enterica. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[11]  J. Roth,et al.  The end of the cob operon: evidence that the last gene (cobT) catalyzes synthesis of the lower ligand of vitamin B12, dimethylbenzimidazole , 1995, Journal of bacteriology.

[12]  C. Ginocchio,et al.  Functional conservation among members of the Salmonella typhimurium InvA family of proteins , 1995, Infection and immunity.

[13]  J. Lawrence,et al.  The Cobalamin (Coenzyme B 12 ) Biosynthetic Genes ofEscherichia coli , 1995 .

[14]  H. Ochman,et al.  The evolution of invasion by enteric bacteria. , 1995, Canadian journal of microbiology.

[15]  D. Dykhuizen,et al.  Detecting selective sweeps in naturally occurring Escherichia coli. , 1994, Genetics.

[16]  D. Dykhuizen,et al.  Clonal divergence in Escherichia coli as a result of recombination, not mutation. , 1994, Science.

[17]  A. Maurelli Virulence protein export systems in Salmonella and Shigella: a new family or lost relatives? , 1994, Trends in cell biology.

[18]  Heidi J. Sofia,et al.  Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes , 1993, Nucleic Acids Res..

[19]  Horizontal Gene Flow: Evidence and Possible Consequences , 1994 .

[20]  H. Ochman,et al.  Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. , 1993, The EMBO journal.

[21]  J. Luchansky,et al.  Comparison and genomic sizing of Escherichia coli O157:H7 isolates by pulsed-field gel electrophoresis , 1993, Applied and environmental microbiology.

[22]  B. Wanner,et al.  Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli. , 1993, Gene.

[23]  F. Blattner,et al.  DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. , 1993, Genomics.

[24]  Harvard Medical School,et al.  Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium , 1993, Journal of bacteriology.

[25]  J. Klena,et al.  The rfaS gene, which is involved in production of a rough form of lipopolysaccharide core in Escherichia coli K-12, is not present in the rfa cluster of Salmonella typhimurium LT2 , 1993, Journal of Bacteriology.

[26]  R. Milkman,et al.  Molecular evolution of the Escherichia coli chromosome. IV. Sequence comparisons. , 1993, Genetics.

[27]  M. G. Kidwell Lateral transfer in natural populations of eukaryotes. , 1993, Annual review of genetics.

[28]  F. Blattner,et al.  Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. , 1993, Nucleic acids research.

[29]  B. Wanner,et al.  Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation. , 1992, FEMS microbiology letters.

[30]  F. Blattner,et al.  Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. , 1992, Science.

[31]  D. Hartl,et al.  Inference of horizontal genetic transfer from molecular data: an approach using the bootstrap. , 1992, Genetics.

[32]  D. Labie,et al.  Molecular Evolution , 1991, Nature.

[33]  A. Danchin,et al.  Evidence for horizontal gene transfer in Escherichia coli speciation. , 1991, Journal of molecular biology.

[34]  R Milkman,et al.  Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. , 1990, Genetics.

[35]  G. Bernardi,et al.  The isochore organization of the human genome. , 1989, Annual review of genetics.

[36]  H. Schweizer,et al.  Molecular characterization of the tdc operon of Escherichia coli K-12 , 1988, Journal of bacteriology.

[37]  N. Sueoka Directional mutation pressure and neutral molecular evolution. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[38]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[39]  P. Sharp,et al.  The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.

[40]  S. Osawa,et al.  The guanine and cytosine content of genomic DNA and bacterial evolution. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[42]  M. Riley,et al.  Location and analysis of nucleotide sequences at one end of a putative lac transposon in the Escherichia coli chromosome , 1984, Journal of bacteriology.

[43]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[44]  T. Whittam,et al.  Enzyme polymorphism and genetic population structure in Escherichia coli and Shigella. , 1983, Journal of general microbiology.

[45]  B. Efron,et al.  A Leisurely Look at the Bootstrap, the Jackknife, and , 1983 .

[46]  P. Doty,et al.  Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. , 1962, Journal of molecular biology.

[47]  N. Sueoka On the genetic basis of variation and heterogeneity of DNA base composition. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[48]  N. Sueoka Variation and heterogeneity of base composition of deoxyribonucleic acids: A compilation of old and new data , 1961 .

[49]  M Meselson,et al.  THE RELATIVE HOMOGENEITY OF MICROBIAL DNA. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[50]  P. Doty,et al.  Heterogeneity in Deoxyribonucleic Acids: II. Dependence of the Density of Deoxyribonucleic Acids on Guanine–Cytosine Content , 1959, Nature.