Dendroaspis natriuretic peptide relaxes isolated human arteries and veins.

[1]  P. Wennberg,et al.  Renal actions of synthetic dendroaspis natriuretic peptide. , 1999, Kidney international.

[2]  P. Wennberg,et al.  Presence of Dendroaspis natriuretic peptide-like immunoreactivity in human plasma and its increase during human heart failure. , 1999, Mayo Clinic proceedings.

[3]  R. Rizza,et al.  Insulin and insulin-like growth factor-I cause coronary vasorelaxation in vitro. , 1998, Hypertension.

[4]  R. Levin,et al.  Natriuretic peptides: physiology, therapeutic potential, and risk stratification in ischemic heart disease. , 1998, American heart journal.

[5]  T. Lüscher,et al.  Endothelium-independent relaxation and hyperpolarization to C-type natriuretic peptide in porcine coronary arteries. , 1998, Journal of cardiovascular pharmacology.

[6]  J. Price,et al.  Inhibition of cGMP mediated relaxation in small rat coronary arteries by block of CA++ activated K+ channels. , 1997, Life sciences.

[7]  Bevan Ja Shear stress, the endothelium and the balance between flow-induced contraction and dilation in animals and man. , 1997 .

[8]  R. Schwartz,et al.  The effect of basic fibroblast growth factor on coronary vascular tone in experimental hypercholesterolemia in vivo and in vitro , 1997, Coronary artery disease.

[9]  S. Milstien,et al.  Effect of tetrahydrobiopterin on endothelial function in canine middle cerebral arteries. , 1996, Circulation research.

[10]  O. Carretero,et al.  Mechanisms of action of atrial natriuretic factor and C-type natriuretic peptide. , 1996, Hypertension.

[11]  S. Oparil,et al.  The elusive role of atrial natriuretic peptide in hypertension. , 1995, Mayo Clinic proceedings.

[12]  S. Turner,et al.  Atrial natriuretic peptide and blood pressure in a population-based sample. , 1995, Mayo Clinic proceedings.

[13]  G. Mcpherson,et al.  ELECTROPHYSIOLOGICAL PROPERTIES OF THE RAT MIDDLE CEREBRAL ARTERY AT DIFFERENT LEVELS OF PASSIVE WALL TENSION , 1995, Clinical and experimental pharmacology & physiology.

[14]  Y. Matsuda,et al.  A functional role for endogenous atrial natriuretic peptide in a canine model of early left ventricular dysfunction. , 1995, The Journal of clinical investigation.

[15]  F. Cosentino,et al.  Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. , 1995, Circulation.

[16]  V. Miller,et al.  Vascular actions of C-type natriuretic peptide in isolated porcine coronary arteries and coronary vascular smooth muscle cells. , 1994, Biochemical and biophysical research communications.

[17]  Y. Nakaya,et al.  Atrial natriuretic factor and isosorbide dinitrate modulate the gating of ATP-sensitive K+ channels in cultured vascular smooth muscle cells. , 1994, Circulation research.

[18]  M. Redfield,et al.  Atrial natriuretic peptide in heart failure. , 1993, Journal of the American College of Cardiology.

[19]  W. Edwards,et al.  Natriuretic peptide system in human heart failure. , 1993, Circulation.

[20]  Richard E. White,et al.  Potassium channel stimulation by natriuretic peptides through cGMP-dependent dephosphorylation , 1993, Nature.

[21]  M. Lazdunski,et al.  A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). , 1992, The Journal of biological chemistry.

[22]  N. Perico,et al.  Atrial Natriuretic Peptide and Prostacyclin Synergistically Mediate Hyperfiltration and Hyperperfusion of Diabetic Rats , 1992, Diabetes.

[23]  K. Hosoda,et al.  Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. , 1992, Endocrinology.

[24]  A. Labovitz,et al.  Echocardiographic evaluation of cardiac structure and function in elderly subjects with isolated systolic hypertension. , 1991, Journal of the American College of Cardiology.

[25]  W. Edwards,et al.  Differential histopathology of primary atherosclerotic and restenotic lesions in coronary arteries and saphenous vein bypass grafts: analysis of tissue obtained from 73 patients by directional atherectomy. , 1991, Journal of the American College of Cardiology.

[26]  Sujay K. Singh,et al.  The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family , 1989, Cell.

[27]  G. Reiser,et al.  Atrial natriuretic polypeptide hormones induce membrane potential responses in cultured rat glioma cells , 1987, Brain Research.