On Nesterov's Approach to Semi-infinite Programming
暂无分享,去创建一个
[1] Claude E. Shannon,et al. Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..
[2] Jacques Tits,et al. Sur la trialité et certains groupes qui s’en déduisent , 1959 .
[3] Jacques Tits,et al. Les groupes simples de Suzuki et de Ree , 1960 .
[4] M. G. Kreĭn,et al. Some questions in the theory of moments , 1962 .
[5] I. G. MacDonald,et al. Lectures on Lie Groups and Lie Algebras: Simple groups of Lie type , 1995 .
[6] M. Simonovits,et al. Cycles of even length in graphs , 1974 .
[7] M. Kreĭn,et al. The Markov Moment Problem and Extremal Problems , 1977 .
[8] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[9] B. Bollobás,et al. Extremal Graph Theory , 2013 .
[10] G. A. Margulis,et al. Explicit constructions of graphs without short cycles and low density codes , 1982, Comb..
[11] Norman Biggs,et al. The sextet construction for cubic graphs , 1983, Comb..
[12] Wilfried Imrich,et al. Explicit construction of regular graphs without small cycles , 1984, Comb..
[13] Alfred Weiss. Girths of bipartite sextet graphs , 1984, Comb..
[14] N. Koblitz. A Course in Number Theory and Cryptography , 1987 .
[15] A. Neumaier,et al. Distance Regular Graphs , 1989 .
[16] Norman L. Biggs,et al. Note on the girth of Ramanujan graphs , 1990, J. Comb. Theory, Ser. B.
[17] Andries E. Brouwer,et al. The complement of a geometric hyperplane in a generalized polygon is usually connected , 1993 .
[18] Moshe Morgenstern,et al. Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.
[19] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[20] Alexander Lubotzky,et al. Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.
[21] V. A. Ustimenko,et al. On Some Properties of Geometries of Chevalley Groups and Their Generalizations , 1994 .
[22] Alexander Lubotzky,et al. Cayley graphs: eigenvalues, expanders and random walks , 1995 .
[23] F. Lazebnik,et al. A new series of dense graphs of high girth , 1995, math/9501231.
[24] Felix Lazebnik,et al. Explicit Construction of Graphs with an Arbitrary Large Girth and of Large Size , 1995, Discret. Appl. Math..
[25] Felix Lazebnik,et al. A characterization of the components of the graphs D(k, q) , 1996, Discret. Math..
[26] Algebras and Lie Groups , 1997 .
[27] Neal Koblitz,et al. Algebraic aspects of cryptography , 1998, Algorithms and computation in mathematics.
[28] Yurii Nesterov,et al. Squared Functional Systems and Optimization Problems , 2000 .
[29] S. Landau. Standing the Test of Time : The Data Encryption Standard , 2000 .
[30] Paul Van Dooren,et al. Convex optimization over positive polynomials and filter design , 2000 .
[31] Vasyl Ustimenko,et al. CRYPTIM: Graphs as Tools for Symmetric Encryption , 2001, AAECC.
[32] Zhi-Quan Luo,et al. Linear matrix inequality formulation of spectral mask constraints , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).
[33] Leonid Faybusovich. Self-Concordant Barriers for Cones Generated by Chebyshev Systems , 2002, SIAM J. Optim..
[34] Paul Van Dooren,et al. Optimization Problems over Positive Pseudopolynomial Matrices , 2003, SIAM J. Matrix Anal. Appl..
[35] Vasiliy A. Ustimenko,et al. Extremal properties of regular and affine generalized m-gons as tactical configurations , 2003, Eur. J. Comb..