Precise synthesis, functionalization and application of thiolate-protected gold clusters

[1]  Y. Negishi,et al.  High-resolution separation of thiolate-protected gold clusters by reversed-phase high-performance liquid chromatography. , 2016, Physical chemistry chemical physics : PCCP.

[2]  R. Jin,et al.  Isomerism in Au28(SR)20 Nanocluster and Stable Structures. , 2016, Journal of the American Chemical Society.

[3]  C. Ackerson,et al.  Crystal Structure of the PdAu24(SR)18(0) Superatom. , 2016, Inorganic chemistry.

[4]  Jinlong Yang,et al.  Mono-cadmium vs Mono-mercury Doping of Au25 Nanoclusters. , 2015, Journal of the American Chemical Society.

[5]  Jinlong Yang,et al.  Structural isomserism in gold nanoparticles revealed by X-ray crystallography , 2015, Nature Communications.

[6]  T. Bürgi,et al.  Pd2Au36(SR)24 cluster: structure studies. , 2015, Nanoscale.

[7]  R. Jin,et al.  Gold tetrahedra coil up: Kekulé-like and double helical superstructures , 2015, Science Advances.

[8]  Younan Xia,et al.  Gold Nanomaterials at Work in Biomedicine. , 2015, Chemical reviews.

[9]  Susobhan Choudhury,et al.  Efficient red luminescence from organic-soluble Au₂₅ clusters by ligand structure modification. , 2015, Nanoscale.

[10]  R. Jin,et al.  Observation of Body-Centered Cubic Gold Nanocluster. , 2015, Angewandte Chemie.

[11]  Qing Tang,et al.  Interconversion between Superatomic 6-Electron and 8-Electron Configurations of M@Au₂₄(SR)₁₈ Clusters (M = Pd, Pt). , 2015, Journal of the American Chemical Society.

[12]  Yongbo Song,et al.  A New Crystal Structure of Au36 with a Au14 Kernel Cocapped by Thiolate and Chloride. , 2015, Journal of the American Chemical Society.

[13]  R. Gil,et al.  Crystal Structure of Barrel-Shaped Chiral Au130(p-MBT)50 Nanocluster. , 2015, Journal of the American Chemical Society.

[14]  Jinlong Yang,et al.  Mono-Mercury Doping of Au25 and the HOMO/LUMO Energies Evaluation Employing Differential Pulse Voltammetry. , 2015, Journal of the American Chemical Society.

[15]  Y. Negishi,et al.  Understanding Ligand-Exchange Reactions on Thiolate-Protected Gold Clusters by Probing Isomer Distributions Using Reversed-Phase High-Performance Liquid Chromatography. , 2015, ACS nano.

[16]  R. Jin,et al.  Transformation Chemistry of Gold Nanoclusters: From One Stable Size to Another. , 2015, The journal of physical chemistry letters.

[17]  Y. Negishi,et al.  Effect of trimetallization in thiolate-protected Au(24-n)Cu(n)Pd clusters. , 2015, Nanoscale.

[18]  K. Koyasu,et al.  Slow-Reduction Synthesis of a Thiolate-Protected One-Dimensional Gold Cluster Showing an Intense Near-Infrared Absorption. , 2015, Journal of the American Chemical Society.

[19]  Manzhou Zhu,et al.  A metal exchange method for thiolate-protected tri-metal M(1)Ag(x)Au(24-x)(SR)(18)(0) (M = Cd/Hg) nanoclusters. , 2015, Nanoscale.

[20]  K. L. D. M. Weerawardene,et al.  Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. , 2015, Chemical reviews.

[21]  X. Zuo,et al.  Au133(SPh-tBu)52 nanomolecules: X-ray crystallography, optical, electrochemical, and theoretical analysis. , 2015, Journal of the American Chemical Society.

[22]  Kevin J. Gagnon,et al.  X-ray Crystal Structure of Au38-xAgx(SCH2CH2Ph)24 Alloy Nanomolecules. , 2015, The journal of physical chemistry letters.

[23]  P. Li,et al.  Metal exchange method using Au25 nanoclusters as templates for alloy nanoclusters with atomic precision. , 2015, Journal of the American Chemical Society.

[24]  Jun Zhang,et al.  The structure and optical properties of the [Au18(SR)14] nanocluster. , 2015, Angewandte Chemie.

[25]  Matthew Y. Sfeir,et al.  Structural patterns at all scales in a nonmetallic chiral Au133(SR)52 nanoparticle , 2015, Science Advances.

[26]  R. Whetten,et al.  ESI-MS identification of abundant copper-gold clusters exhibiting high plasmonic character , 2015 .

[27]  A. Tlahuice-Flores New insight into the structure of thiolated gold clusters: a structural prediction of the Au187(SR)68 cluster. , 2015, Physical chemistry chemical physics : PCCP.

[28]  Yoshiki Matsuura,et al.  Controlled Loading of Small Aun Clusters (n = 10–39) onto BaLa4Ti4O15 Photocatalysts: Toward an Understanding of Size Effect of Cocatalyst on Water-Splitting Photocatalytic Activity , 2015 .

[29]  Hannu Häkkinen,et al.  A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters. , 2015, Journal of the American Chemical Society.

[30]  Jinlong Yang,et al.  Adding two active silver atoms on Au₂₅ nanoparticle. , 2015, Nano letters.

[31]  Chia-Wei Wang,et al.  Fluorescent gold nanoclusters: recent advances in sensing and imaging. , 2015, Analytical chemistry.

[32]  Y. Negishi,et al.  Recent Progress in the Functionalization Methods of Thiolate-Protected Gold Clusters. , 2014, The journal of physical chemistry letters.

[33]  N. Zheng,et al.  High-yield synthesis and crystal structure of a green Au₃₀ cluster co-capped by thiolate and sulfide. , 2014, Chemical communications.

[34]  Y. Negishi,et al.  Preferential Location of Coinage Metal Dopants (M = Ag or Cu) in [Au25–xMx(SC2H4Ph)18]− (x ∼ 1) As Determined by Extended X-ray Absorption Fine Structure and Density Functional Theory Calculations , 2014 .

[35]  A. Fortunelli,et al.  Au₂₄(SAdm)₁₆ nanomolecules: X-ray crystal structure, theoretical analysis, adaptability of adamantane ligands to form Au₂₃(SAdm)₁₆ and Au₂₅(SAdm)₁₆, and its relation to Au₂₅(SR)₁₈. , 2014, Journal of the American Chemical Society.

[36]  Ammu Mathew,et al.  Noble Metal Clusters: Applications in Energy, Environment, and Biology , 2014 .

[37]  T. Bürgi,et al.  Racemization of chiral Pd2Au36(SC2H4Ph)24: doping increases the flexibility of the cluster surface. , 2014, Journal of the American Chemical Society.

[38]  Peng Zhang X-ray Spectroscopy of Gold–Thiolate Nanoclusters , 2014 .

[39]  J. Limtrakul,et al.  Thiolate-Mediated Selectivity Control in Aerobic Alcohol Oxidation by Porous Carbon-Supported Au25 Clusters , 2014 .

[40]  F. Weigend,et al.  Superatomic Orbitals under Spin-Orbit Coupling. , 2014, The journal of physical chemistry letters.

[41]  R. Jin,et al.  Gold-thiolate ring as a protecting motif in the Au20(SR)16 nanocluster and implications. , 2014, Journal of the American Chemical Society.

[42]  A. Dass,et al.  Au₁₃₇(SR)₅₆ nanomolecules: composition, optical spectroscopy, electrochemistry and electrocatalytic reduction of CO₂. , 2014, Chemical Communications.

[43]  Kevin G. Stamplecoskie,et al.  Size-dependent excited state behavior of glutathione-capped gold clusters and their light-harvesting capacity. , 2014, Journal of the American Chemical Society.

[44]  D. Leong,et al.  Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of Au₂₅ nanoclusters. , 2014, Journal of the American Chemical Society.

[45]  H. Yao,et al.  Chiral Monolayer-Protected Bimetallic Au–Ag Nanoclusters: Alloying Effect on Their Electronic Structure and Chiroptical Activity , 2014 .

[46]  Y. Negishi,et al.  Advanced use of high-performance liquid chromatography for synthesis of controlled metal clusters. , 2014, Nanoscale.

[47]  J. Xie,et al.  Facile synthesis of water-soluble Au(25-x)Ag(x) nanoclusters protected by mono- and bi-thiolate ligands. , 2014, Chemical communications.

[48]  D. Cullen,et al.  Faradaurate-940: synthesis, mass spectrometry, electron microscopy, high-energy X-ray diffraction, and X-ray scattering study of Au∼940±20(SR)∼160±4 nanocrystals. , 2014, ACS nano.

[49]  Y. Negishi,et al.  Au25 Clusters Containing Unoxidized Tellurolates in the Ligand Shell. , 2014, The journal of physical chemistry letters.

[50]  R. Jin,et al.  Crystal structure and electronic properties of a thiolate-protected Au24 nanocluster. , 2014, Nanoscale.

[51]  Tiantian Cao,et al.  A simple model for understanding the fluorescence behavior of Au25 nanoclusters. , 2014, Nanoscale.

[52]  A. Dass,et al.  Synthesis of Au130(SR)50 and Au(130-x)Ag(x)(SR)50 nanomolecules through core size conversion of larger metal clusters. , 2014, Physical chemistry chemical physics : PCCP.

[53]  D. Leong,et al.  Ultrasmall Au10−12(SG)10−12 Nanomolecules for High Tumor Specificity and Cancer Radiotherapy , 2014, Advanced materials.

[54]  Douglas R. Kauffman,et al.  Generation of Singlet Oxygen by Photoexcited Au25(SR)18 Clusters , 2014 .

[55]  R. Jin,et al.  Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. , 2014, Journal of the American Chemical Society.

[56]  P. Kamat,et al.  Glutathione-capped gold nanoclusters as photosensitizers. Visible light-induced hydrogen generation in neutral water. , 2014, Journal of the American Chemical Society.

[57]  R. Jin,et al.  Magic Size Au64(S-c-C6H11)32 Nanocluster Protected by Cyclohexanethiolate , 2014 .

[58]  A. Zoleo,et al.  Au₂₅(SEt)₁₈, a nearly naked thiolate-protected Au₂₅ cluster: structural analysis by single crystal X-ray crystallography and electron nuclear double resonance. , 2014, ACS nano.

[59]  Y. Negishi Toward the Creation of Functionalized Metal Nanoclusters and Highly Active Photocatalytic Materials Using Thiolate-Protected Magic Gold Clusters , 2014 .

[60]  T. Verbiest,et al.  Chiral phase transfer and enantioenrichment of thiolate-protected Au₁₀₂ clusters. , 2014, Journal of the American Chemical Society.

[61]  T. Bürgi,et al.  Chirality in thiolate-protected gold clusters. , 2014, Accounts of chemical research.

[62]  A. Dass,et al.  Core size conversion: route for exclusive synthesis of Au38 or Au40 nanomolecules. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[63]  R. Jin,et al.  Thermally robust Au99(SPh)42 nanoclusters for chemoselective hydrogenation of nitrobenzaldehyde derivatives in water. , 2014, Journal of the American Chemical Society.

[64]  Dongil Lee,et al.  Ionic liquid of a gold nanocluster: a versatile matrix for electrochemical biosensors. , 2014, ACS nano.

[65]  H. Häkkinen,et al.  Mixed-Monolayer-Protected Au25 Clusters with Bulky Calix[4]arene Functionalities. , 2014, The journal of physical chemistry letters.

[66]  Katsutoshi Sato,et al.  Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability. , 2014, Journal of the American Chemical Society.

[67]  A. Dass,et al.  Au(144-x)Cu(x)(SC6H13)60 nanomolecules: effect of Cu incorporation on composition and plasmon-like peak emergence in optical spectra. , 2014, Chemical communications.

[68]  C. Aikens,et al.  X-ray Crystal Structure and Theoretical Analysis of Au25-xAgx(SCH2CH2Ph)18(-) Alloy. , 2014, The journal of physical chemistry letters.

[69]  D. Leong,et al.  Identification of a highly luminescent Au22(SG)18 nanocluster. , 2014, Journal of the American Chemical Society.

[70]  Yadan W. Chen,et al.  Chromatographic resolution of closely related species in pharmaceutical chemistry: dehalogenation impurities and mixtures of halogen isomers. , 2014, Analytical chemistry.

[71]  Kevin G. Stamplecoskie,et al.  Excited-State Behavior of Luminescent Glutathione-Protected Gold Clusters , 2014 .

[72]  V. Ananikov,et al.  Self-assembled selenium monolayers: from nanotechnology to materials science and adaptive catalysis. , 2013, Chemistry.

[73]  R. Jin,et al.  Nonsuperatomic [Au23(SC6H11)16]- nanocluster featuring bipyramidal Au15 kernel and trimeric Au3(SR)4 motif. , 2013, Journal of the American Chemical Society.

[74]  A. Fujishima,et al.  Cosensitization Properties of Glutathione-Protected Au25 Cluster on Ruthenium Dye-Sensitized TiO2 Photoelectrode , 2013 .

[75]  A. Dass,et al.  Au(144-x)Pd(x)(SR)60 nanomolecules. , 2013, Chemical communications.

[76]  Y. Negishi,et al.  Toward the creation of stable, functionalized metal clusters. , 2013, Physical chemistry chemical physics : PCCP.

[77]  N. Kojima,et al.  Formation of a Pd@Au12 Superatomic Core in Au24Pd1(SC12H25)18 Probed by 197Au Mössbauer and Pd K-Edge EXAFS Spectroscopy , 2013 .

[78]  L. Beqa,et al.  Ligand Exchange Reaction on Au38(SR)24, Separation of Au38(SR)23(SR′)1 Regioisomers, and Migration of Thiolates , 2013 .

[79]  R. Jin,et al.  Oxide-supported atomically precise gold nanocluster for catalyzing Sonogashira cross-coupling , 2013 .

[80]  R. Johnston,et al.  Direct atomic imaging and density functional theory study of the Au24Pd1 cluster catalyst. , 2013, Nanoscale.

[81]  R. Whetten,et al.  Ligand Effects on the Structure and the Electronic Optical Properties of Anionic Au25(SR)18 Clusters , 2013 .

[82]  Y. Negishi,et al.  Selenolate-Protected Au38 Nanoclusters: Isolation and Structural Characterization , 2013 .

[83]  Peixun Liu,et al.  Enhanced Tumor Accumulation of Sub‐2 nm Gold Nanoclusters for Cancer Radiation Therapy , 2013, Advanced healthcare materials.

[84]  R. Jin,et al.  Stable Au25(SR)18/TiO2 Composite Nanostructure with Enhanced Visible Light Photocatalytic Activity , 2013 .

[85]  Akihiko Kudo,et al.  Enhanced photocatalytic water splitting by BaLa4Ti4O15 loaded with ∼1 nm gold nanoclusters using glutathione-protected Au25 clusters. , 2013, Nanoscale.

[86]  R. Jin,et al.  Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. , 2013, Journal of the American Chemical Society.

[87]  R. Jin,et al.  CeO2-supported Au38(SR)24 nanocluster catalysts for CO oxidation: a comparison of ligand-on and -off catalysts. , 2013, Nanoscale.

[88]  A. Kudo,et al.  The effect of Au cocatalyst loaded on La-doped NaTaO3 on photocatalytic water splitting and O2 photoreduction , 2013 .

[89]  Y. Negishi,et al.  Synthesis of stable Cu(n)Au(25-n) nanoclusters (n = 1-9) using selenolate ligands. , 2013, Chemical communications.

[90]  T. Pradeep,et al.  New Protocols for the Synthesis of Stable Ag and Au Nanocluster Molecules. , 2013, The journal of physical chemistry letters.

[91]  A. Nakajima Study on Electronic Properties of Composite Clusters toward Nanoscale Functional Advanced Materials , 2013 .

[92]  Douglas R. Kauffman,et al.  A Quantum Alloy: The Ligand-Protected Au25–xAgx(SR)18 Cluster , 2013 .

[93]  Rongchao Jin,et al.  Atomically precise gold nanoclusters as new model catalysts. , 2013, Accounts of chemical research.

[94]  R. Jin,et al.  Atomic-level alloying and de-alloying in doped gold nanoparticles. , 2013, Chemistry.

[95]  T. Pradeep,et al.  Separation of precise compositions of noble metal clusters protected with mixed ligands. , 2013, Journal of the American Chemical Society.

[96]  N. Yan,et al.  Scalable and Precise Synthesis of Thiolated Au10–12, Au15, Au18, and Au25 Nanoclusters via pH Controlled CO Reduction , 2013 .

[97]  U. Landman,et al.  STEM Electron Diffraction and High Resolution Images Used in the Determination of the Crystal Structure of Au144(SR)60 Cluster. , 2013, The journal of physical chemistry letters.

[98]  H. Mattoussi,et al.  Growth of highly fluorescent polyethylene glycol- and zwitterion-functionalized gold nanoclusters. , 2013, ACS nano.

[99]  K. Domen,et al.  Polyol Synthesis of Size-Controlled Rh Nanoparticles and Their Application to Photocatalytic Overall Water Splitting under Visible Light , 2013 .

[100]  Na Li,et al.  State of the art in gold nanoparticle synthesis , 2013 .

[101]  Y. Negishi,et al.  Remarkable enhancement in ligand-exchange reactivity of thiolate-protected Au25 nanoclusters by single Pd atom doping. , 2013, Nanoscale.

[102]  S. J. Ambrose,et al.  Stable and recyclable Au25 clusters for the reduction of 4-nitrophenol. , 2013, Chemical communications.

[103]  U. Landman,et al.  Total structure and electronic properties of the gold nanocrystal Au36(SR)24. , 2012, Angewandte Chemie.

[104]  Nikolaos Dimitratos,et al.  Designing bimetallic catalysts for a green and sustainable future. , 2012, Chemical Society reviews.

[105]  R. Jin,et al.  Au25 nanocluster-catalyzed Ullmann-type homocoupling reaction of aryl iodides. , 2012, Chemical communications.

[106]  R. Arakawa,et al.  A new matrix of MALDI-TOF MS for the analysis of thiolate-protected gold clusters , 2012 .

[107]  R. Jin,et al.  Gold nanocluster-catalyzed selective oxidation of sulfide to sulfoxide. , 2012, Nanoscale.

[108]  M. Pettersson,et al.  Experimental and Theoretical Determination of the Optical Gap of the Au144(SC2H4Ph)60 Cluster and the (Au/Ag)144(SC2H4Ph)60 Nanoalloys. , 2012, The journal of physical chemistry letters.

[109]  R. Gil,et al.  Monoplatinum doping of gold nanoclusters and catalytic application. , 2012, Journal of the American Chemical Society.

[110]  Y. Negishi,et al.  Ligand-Induced Stability of Gold Nanoclusters: Thiolate versus Selenolate. , 2012, The journal of physical chemistry letters.

[111]  J. Lee,et al.  Observation of cluster size growth in CO-directed synthesis of Au25(SR)18 nanoclusters. , 2012, ACS nano.

[112]  K. Tamao,et al.  A new binding motif of sterically demanding thiolates on a gold cluster. , 2012, Journal of the American Chemical Society.

[113]  R. Jin,et al.  Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. , 2012, Nano letters.

[114]  H. Häkkinen,et al.  Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters. , 2012, Journal of the American Chemical Society.

[115]  Y. Negishi,et al.  Effect of Copper Doping on Electronic Structure, Geometric Structure, and Stability of Thiolate-Protected Au25 Nanoclusters. , 2012, The journal of physical chemistry letters.

[116]  T. Pradeep,et al.  One-Step Route to Luminescent Au18SG14 in the Condensed Phase and Its Closed Shell Molecular Ions in the Gas Phase , 2012 .

[117]  A. Dass,et al.  AuAg alloy nanomolecules with 38 metal atoms. , 2012, Nanoscale.

[118]  Xiao Cheng Zeng,et al.  Investigating the structural evolution of thiolate protected gold clusters from first-principles. , 2012, Nanoscale.

[119]  Y. Negishi,et al.  A photoresponsive Au25 nanocluster protected by azobenzene derivative thiolates. , 2012, Nanoscale.

[120]  S. Xie,et al.  Enhancement in Aerobic Alcohol Oxidation Catalysis of Au25 Clusters by Single Pd Atom Doping , 2012 .

[121]  Zhikun Wu,et al.  Quantum sized gold nanoclusters with atomic precision. , 2012, Accounts of chemical research.

[122]  Peter J. Krommenhoek,et al.  Bulky adamantanethiolate and cyclohexanethiolate ligands favor smaller gold nanoparticles with altered discrete sizes. , 2012, ACS nano.

[123]  Rongchao Jin,et al.  CO oxidation catalyzed by oxide-supported Au25(SR)18 nanoclusters and identification of perimeter sites as active centers. , 2012, ACS nano.

[124]  H. Yao On the Electronic Structures of Au25(SR)18 Clusters Studied by Magnetic Circular Dichroism Spectroscopy. , 2012, The journal of physical chemistry letters.

[125]  Douglas R. Kauffman,et al.  Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. , 2012, Journal of the American Chemical Society.

[126]  Y. Negishi,et al.  Synthesis and the Origin of the Stability of Thiolate-Protected Au130 and Au187 Clusters. , 2012, Journal of Physical Chemistry Letters.

[127]  H. Häkkinen,et al.  The gold-sulfur interface at the nanoscale. , 2012, Nature chemistry.

[128]  Evangelina Pensa,et al.  The chemistry of the sulfur-gold interface: in search of a unified model. , 2012, Accounts of chemical research.

[129]  A. Dass Nano-scaling law: geometric foundation of thiolated gold nanomolecules. , 2012, Nanoscale.

[130]  S. Pal,et al.  Ag7Au6: a 13-atom alloy quantum cluster. , 2012, Angewandte Chemie.

[131]  T. Tsukuda Toward an Atomic-Level Understanding of Size-Specific Properties of Protected and Stabilized Gold Clusters , 2012 .

[132]  Y. Negishi,et al.  Palladium doping of magic gold cluster Au38(SC2H4Ph)24: formation of Pd2Au36(SC2H4Ph)24 with higher stability than Au38(SC2H4Ph)24. , 2012, Chemical communications.

[133]  K. Ariga,et al.  Nanoarchitectonics for mesoporous materials , 2012 .

[134]  T. Bürgi,et al.  First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands , 2012, Nature Communications.

[135]  A. Kudo,et al.  Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. , 2011, Journal of the American Chemical Society.

[136]  Gregory S. Tschumper,et al.  Interstaple dithiol cross-linking in Au25(SR)18 nanomolecules: a combined mass spectrometric and computational study. , 2011, Journal of the American Chemical Society.

[137]  H. Shim,et al.  Size-Controlled Electron Transfer and Photocatalytic Activity of ZnO–Au Nanoparticle Composites , 2011 .

[138]  Y. Negishi,et al.  Isolation and structural characterization of an octaneselenolate-protected Au25 cluster. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[139]  T. Tatsuma,et al.  Sensitization of TiO2 with Pt, Pd, and Au clusters protected by mercapto- and dimercaptosuccinic acid. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[140]  R. Jin,et al.  Chiral Au₂₅ nanospheres and nanorods: synthesis and insight into the origin of chirality. , 2011, Nano letters.

[141]  A. Dass,et al.  (AuAg)144(SR)60 alloy nanomolecules. , 2011, Nanoscale.

[142]  Chen Zhou,et al.  Luminescent gold nanoparticles with pH-dependent membrane adsorption. , 2011, Journal of the American Chemical Society.

[143]  Zhi Wang,et al.  Real-space observation of prolate monolayer-protected Au(38) clusters using aberration-corrected scanning transmission electron microscopy. , 2011, Small.

[144]  Y. Tong,et al.  Critical role of water and the structure of inverse micelles in the Brust-Schiffrin synthesis of metal nanoparticles. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[145]  S. Dai,et al.  Interaction of Gold Clusters with a Hydroxylated Surface. , 2011, The journal of physical chemistry letters.

[146]  Barry Ellen,et al.  Doping 25-Atom and 38-Atom Gold Nanoclusters with Palladium , 2011 .

[147]  Y. Tong,et al.  Mechanistic insights into the Brust-Schiffrin two-phase synthesis of organo-chalcogenate-protected metal nanoparticles. , 2011, Journal of the American Chemical Society.

[148]  T. Akita,et al.  Aerobic Oxidation of Cyclohexane Catalyzed by Size-Controlled Au Clusters on Hydroxyapatite: Size Effect in the Sub-2 nm Regime , 2011 .

[149]  R. Jin,et al.  An atomic-level strategy for unraveling gold nanocatalysis from the perspective of Au(n)(SR)m nanoclusters. , 2010, Chemistry.

[150]  Masayuki Kanehara,et al.  Room-Temperature Coulomb Blockade from Chemically Synthesized Au Nanoparticles Stabilized by Acid–Base Interaction , 2010 .

[151]  R. Jin,et al.  Size focusing: a methodology for synthesizing atomically precise gold nanoclusters , 2010 .

[152]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[153]  C. Aikens,et al.  Geometric and Electronic Structure of Au25(SPhX)18− (X = H, F, Cl, Br, CH3, and OCH3) , 2010 .

[154]  T. Tatsuma,et al.  Photovoltaic Properties of Glutathione‐Protected Gold Clusters Adsorbed on TiO2 Electrodes , 2010, Advanced materials.

[155]  Joseph F. Parker,et al.  The story of a monodisperse gold nanoparticle: Au25L18. , 2010, Accounts of chemical research.

[156]  R. Lennox,et al.  New insights into Brust-Schiffrin metal nanoparticle synthesis. , 2010, Journal of the American Chemical Society.

[157]  Y. Negishi,et al.  Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. , 2010, Chemical communications.

[158]  R. Jin,et al.  On the ligand's role in the fluorescence of gold nanoclusters. , 2010, Nano letters.

[159]  Y. Negishi,et al.  Isolation, structure, and stability of a dodecanethiolate-protected Pd(1)Au(24) cluster. , 2010, Physical chemistry chemical physics : PCCP.

[160]  R. Jin,et al.  Total structure determination of thiolate-protected Au38 nanoparticles. , 2010, Journal of the American Chemical Society.

[161]  O. Lopez-Acevedo,et al.  Chirality and electronic structure of the thiolate-protected Au38 nanocluster. , 2010, Journal of the American Chemical Society.

[162]  R. Gil,et al.  Exploring stereoselectivity of Au25 nanoparticle catalyst for hydrogenation of cyclic ketone , 2010 .

[163]  R. Jin,et al.  Thiolate‐Protected Aun Nanoclusters as Catalysts for Selective Oxidation and Hydrogenation Processes , 2010, Advanced materials.

[164]  Dongil Lee,et al.  Directional electron transfer in chromophore-labeled quantum-sized Au 25 clusters: Au25 as an electron donor , 2010 .

[165]  A. Terfort,et al.  Relative stability of thiol and selenol based SAMs on Au(111) - exchange experiments. , 2010, Physical chemistry chemical physics : PCCP.

[166]  R. Jin,et al.  Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of alpha,beta-unsaturated ketones and aldehydes. , 2010, Angewandte Chemie.

[167]  Jianping Xie,et al.  Highly selective and ultrasensitive detection of Hg(2+) based on fluorescence quenching of Au nanoclusters by Hg(2+)-Au(+) interactions. , 2010, Chemical communications.

[168]  C. Noguez,et al.  On the origin of the optical activity displayed by chiral-ligand-protected metallic nanoclusters. , 2010, Journal of the American Chemical Society.

[169]  T. Goodson,et al.  Critical size for the observation of quantum confinement in optically excited gold clusters. , 2010, Journal of the American Chemical Society.

[170]  T. Akita,et al.  Efficient and selective epoxidation of styrene with TBHP catalyzed by Au(25) clusters on hydroxyapatite. , 2010, Chemical communications.

[171]  Y. Einaga,et al.  Reversible optical manipulation of superconductivity. , 2010, Angewandte Chemie.

[172]  D. Scherlis,et al.  Selenium-based self-assembled monolayers: the nature of adsorbate-surface interactions. , 2010, Langmuir.

[173]  R. Jin,et al.  Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. , 2009, ACS nano.

[174]  K. Domen,et al.  Highly dispersed noble-metal/chromia (core/shell) nanoparticles as efficient hydrogen evolution promoters for photocatalytic overall water splitting under visible light. , 2009, Nanoscale.

[175]  Asantha C. Dharmaratne,et al.  Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. , 2009, Journal of the American Chemical Society.

[176]  M. Moseler,et al.  Ligand-Protected Gold Alloy Clusters: Doping the Superatom , 2009 .

[177]  L. Lehtovaara,et al.  A density functional investigation of thiolate-protected bimetal PdAu(24)(SR)(18)(z) clusters: doping the superatom complex. , 2009, Physical chemistry chemical physics : PCCP.

[178]  Y. Negishi,et al.  Size Determination of Gold Clusters by Polyacrylamide Gel Electrophoresis in a Large Cluster Region , 2009 .

[179]  R. Murray,et al.  Mass spectrometry of small bimetal monolayer-protected clusters. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[180]  Wei Chen,et al.  Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. , 2009, Angewandte Chemie.

[181]  Joseph F. Parker,et al.  Femtosecond Relaxation Dynamics of Au25L18− Monolayer-Protected Clusters , 2009 .

[182]  A. Kudo,et al.  Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure , 2009 .

[183]  S. Dai,et al.  From superatomic Au25(SR)18(-) to superatomic M@Au24(SR)18(q) core-shell clusters. , 2009, Inorganic chemistry.

[184]  Yasuaki Einaga,et al.  Reversible phototuning of the large anisotropic magnetization at the interface between a self-assembled photochromic monolayer and gold. , 2009, Journal of the American Chemical Society.

[185]  Nai-Tzu Chen,et al.  Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. , 2008, Chemical communications.

[186]  T. Pradeep,et al.  Ligand Exchange of Au25SG18 Leading to Functionalized Gold Clusters: Spectroscopy, Kinetics, and Luminescence , 2008 .

[187]  T. Ikeda,et al.  Photomobile polymer materials: towards light-driven plastic motors. , 2008, Angewandte Chemie.

[188]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[189]  R. Haasch,et al.  Alkanetelluroxide-protected gold nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[190]  Y. Negishi,et al.  Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. , 2008, Journal of the American Chemical Society.

[191]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[192]  T. Goodson,et al.  Quantum-sized gold clusters as efficient two-photon absorbers. , 2008, Journal of the American Chemical Society.

[193]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[194]  R. Whetten,et al.  On the structure of thiolate-protected Au25. , 2008, Journal of the American Chemical Society.

[195]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[196]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[197]  Zusing Yang,et al.  Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). , 2007, Angewandte Chemie.

[198]  R. Whetten,et al.  Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18. , 2007, Journal of the American Chemical Society.

[199]  Y. Negishi,et al.  Extremely high stability of glutathionate-protected Au25 clusters against core etching. , 2007, Small.

[200]  M. Taniguchi,et al.  Control of the electrode-molecule interface for molecular devices. , 2007, Journal of the American Chemical Society.

[201]  A. H. Holm,et al.  Effect of peptide ligand dipole moments on the redox potentials of Au38 and Au140 nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[202]  Gangli Wang,et al.  NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au38 and Au140 quantum dots. , 2006, The journal of physical chemistry. B.

[203]  Y. Negishi,et al.  Kinetic stabilization of growing gold clusters by passivation with thiolates. , 2006, The journal of physical chemistry. B.

[204]  T. Aida,et al.  Mechanical twisting of a guest by a photoresponsive host , 2006, Nature.

[205]  Martin M. F. Choi,et al.  Ion-pair chromatographic separation of water-soluble gold monolayer-protected clusters. , 2006, Analytical chemistry.

[206]  R. Murray,et al.  Analytical evidence for the monolayer-protected cluster Au225[(S(CH2)5CH3)]75. , 2006, Analytical chemistry.

[207]  Y. Negishi,et al.  Subnanometer-sized Gold Clusters with Dual Molecular Receptors: Synthesis and Assembly in One-dimensional Arrangements , 2005 .

[208]  H. Yao,et al.  Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines. , 2005, Journal of the American Chemical Society.

[209]  Y. Negishi,et al.  Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. , 2005, Journal of the American Chemical Society.

[210]  S. Nagano,et al.  Photocontrolled microphase separation of block copolymers in two dimensions. , 2005, Journal of the American Chemical Society.

[211]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[212]  R. Murray,et al.  Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? , 2005, Journal of the American Chemical Society.

[213]  R. Murray,et al.  Near-IR luminescence of monolayer-protected metal clusters. , 2005, Journal of the American Chemical Society.

[214]  Hiroshi Yao,et al.  Magic-Numbered Aun Clusters Protected by Glutathione Monolayers (n = 18, 21, 25, 28, 32, 39): Isolation and Spectroscopic Characterization , 2004 .

[215]  R. Murray,et al.  Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. , 2004, Journal of the American Chemical Society.

[216]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[217]  Dongil Lee,et al.  Synthesis and Isolation of the Molecule-like Cluster Au38(PhCH2CH2S)24 , 2004 .

[218]  T. Ikeda,et al.  Photomechanics: Directed bending of a polymer film by light , 2003, Nature.

[219]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[220]  H. Finkelmann,et al.  A new opto-mechanical effect in solids. , 2001, Physical review letters.

[221]  R. Whetten,et al.  Near-Infrared Luminescence from Small Gold Nanocrystals , 2000 .

[222]  R. Whetten,et al.  Giant Gold−Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions , 2000 .

[223]  A. M. Alvarez,et al.  Crystal Structures of Molecular Gold Nanocrystal Arrays , 1999 .

[224]  Robert L. Whetten,et al.  Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound , 1998 .

[225]  Robert L. Whetten,et al.  Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra , 1997 .

[226]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[227]  P. Carr,et al.  Comparison of isomer separation on carbon-clad microporous zirconia and on conventional reversed-phase high-performance liquid chromatography supports , 1990 .

[228]  Mary T. Gilbert,et al.  High Performance Liquid Chromatography , 1981 .

[229]  M. Haruta,et al.  Catalytically highly active top gold atom on palladium nanocluster. , 2011, Nature materials.

[230]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[231]  Motohiro Suzuki,et al.  Reversible phototuning of ferromagnetism at Au-S interfaces at room temperature. , 2008, Angewandte Chemie.

[232]  Y. Negishi,et al.  Visible photoluminescence from nearly monodispersed Au12 clusters protected by meso-2,3-dimercaptosuccinic acid , 2004 .

[233]  Naoki Toshima,et al.  Bimetallic nanoparticles—novel materials for chemical and physical applications , 1998 .

[234]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .