Sequential nonlinear learning

[1]  G.B. Giannakis,et al.  Distributed compression-estimation using wireless sensor networks , 2006, IEEE Signal Processing Magazine.

[2]  Gil David,et al.  Hierarchical data organization , clustering and denoising via localized diffusion folders , 2011 .

[3]  Xindong Wu,et al.  Data mining with big data , 2014, IEEE Transactions on Knowledge and Data Engineering.

[4]  Elad Hazan,et al.  Logarithmic regret algorithms for online convex optimization , 2006, Machine Learning.

[5]  Ali H. Sayed,et al.  Mean-square performance of a convex combination of two adaptive filters , 2006, IEEE Transactions on Signal Processing.

[6]  D. Levine,et al.  Parallel distributed processing and neural networks: origins, methodology and cognitive functions. , 1991, International Journal of Neuroscience.

[7]  Suleyman Serdar Kozat,et al.  A Comprehensive Approach to Universal Piecewise Nonlinear Regression Based on Trees , 2013, IEEE Transactions on Signal Processing.

[8]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[9]  Jon Louis Bentley,et al.  Multidimensional Binary Search Trees in Database Applications , 1979, IEEE Transactions on Software Engineering.

[10]  Angelia Nedic,et al.  Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization , 2008, J. Optim. Theory Appl..

[11]  Suleyman Serdar Kozat,et al.  Piecewise nonlinear regression via decision adaptive trees , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[12]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[13]  Asuman E. Ozdaglar,et al.  Constrained Consensus and Optimization in Multi-Agent Networks , 2008, IEEE Transactions on Automatic Control.

[14]  Suleyman Serdar Kozat,et al.  Sequential nonlinear regression via context trees , 2014, 2014 22nd Signal Processing and Communications Applications Conference (SIU).

[15]  Andrew C. Singer,et al.  Nonlinear Autoregressive Modeling and Estimation in the Presence of Noise , 1994 .

[16]  Eweda Eweda,et al.  Comparison of RLS, LMS, and sign algorithms for tracking randomly time-varying channels , 1994, IEEE Trans. Signal Process..

[17]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[18]  Suleyman Serdar Kozat,et al.  Competitive Randomized Nonlinear Prediction Under Additive Noise , 2010, IEEE Signal Processing Letters.

[19]  Robert E. Schapire,et al.  Predicting Nearly as Well as the Best Pruning of a Decision Tree , 1995, COLT.

[20]  Yicong Zhou,et al.  Extreme learning machine for ranking: Generalization analysis and applications , 2014, Neural Networks.

[21]  Andrew C. Singer,et al.  Universal linear prediction by model order weighting , 1999, IEEE Trans. Signal Process..

[22]  Narasimhan Sundararajan,et al.  A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks , 2006, IEEE Transactions on Neural Networks.

[23]  Adam Krzyzak,et al.  Radial Basis Function Networks and Complexity Regularization in Function Learning , 2022 .

[24]  Ali H. Sayed,et al.  Adaptive Networks , 2014, Proceedings of the IEEE.

[25]  Jeffrey S. Simonoff,et al.  RE-EM trees: a data mining approach for longitudinal and clustered data , 2011, Machine Learning.

[26]  Manfred K. Warmuth,et al.  Predicting nearly as well as the best pruning of a planar decision graph , 2002, Theor. Comput. Sci..

[27]  Asuman E. Ozdaglar,et al.  Distributed Subgradient Methods for Multi-Agent Optimization , 2009, IEEE Transactions on Automatic Control.

[28]  Frans M. J. Willems,et al.  The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.

[29]  Suleyman Serdar Kozat,et al.  Comprehensive lower bounds on sequential prediction , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[30]  Ali H. Sayed,et al.  Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior , 2013, IEEE Signal Processing Magazine.

[31]  Ali H. Sayed,et al.  Fundamentals Of Adaptive Filtering , 2003 .

[32]  Georg Zeitler,et al.  Universal Piecewise Linear Prediction Via Context Trees , 2007, IEEE Transactions on Signal Processing.

[33]  Andrew C. Singer,et al.  Constrained Complexity Generalized Context-Tree Algorithms , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[34]  Alfred O. Hero,et al.  Tree-structured nonlinear signal modeling and prediction , 1999, IEEE Trans. Signal Process..

[35]  Ann B. Lee,et al.  Treelets--An adaptive multi-scale basis for sparse unordered data , 2007, 0707.0481.

[36]  Andrew C. Singer,et al.  Universal linear least squares prediction: Upper and lower bounds , 2002, IEEE Trans. Inf. Theory.

[37]  Guang-Bin Huang,et al.  Convex incremental extreme learning machine , 2007, Neurocomputing.

[38]  Sanjoy Dasgupta,et al.  Random projection trees for vector quantization , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[39]  Vladimir Vovk,et al.  Predicting nearly as well as the best pruning of a decision tree through dynamic programming scheme , 2001, Theor. Comput. Sci..

[40]  Zijian Zheng,et al.  Constructing X-of-N Attributes for Decision Tree Learning , 2000, Machine Learning.