High gain observer design for a class of MIMO nonlinear systems triangular with respect to an order

In this paper, the design of a high-gain observer for a large class of MIMO nonlinear systems is considered. An order on the indices of the state variables is first introduced, which allows to characterize a large class of uniformly observable MIMO systems. This order is further used in order to design an observer whose underlying error exponentially converges toward zero. The approach is validated on simulations.

[1]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[2]  G. Bornard,et al.  Observability for any u(t) of a class of nonlinear systems , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[3]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[4]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[5]  X. Xia,et al.  Nonlinear observer design by observer error linearization , 1989 .

[6]  J. Gauthier,et al.  Exponentially converging observers for distillation columns and internal stability of the dynamic output feedback , 1992 .

[7]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[8]  J. Rudolph,et al.  A block triangular nonlinear observer normal form , 1994 .

[9]  J. Gauthier,et al.  Erratum Observability and Observers for Nonlinear Systems , 1995 .

[10]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..

[11]  H. Hammouri,et al.  Observer design for a special class of nonlinear systems , 1998 .

[12]  M. Hou,et al.  Observer with linear error dynamics for nonlinear multi-output systems , 1999 .

[13]  Krishna Busawon,et al.  Observer design based on triangular form generated by injective map , 2000, IEEE Trans. Autom. Control..

[14]  H. Shim,et al.  Semi-global observer for multi-output nonlinear systems , 2001 .

[15]  H. Hammouri,et al.  A graph approach to uniform observability of nonlinear multi-output systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[16]  Martin Guay,et al.  Observer linearization by output-dependent time-scale transformations , 2002, IEEE Trans. Autom. Control..

[17]  H. Hammouri,et al.  Nonlinear observers for locally uniformly observable systems , 2003 .

[18]  Alain Glumineau,et al.  Direct transformation of nonlinear systems into state affine MISO form for observer design , 2003, IEEE Trans. Autom. Control..

[19]  Mohammed M'Saad,et al.  Observer design for a class of MIMO nonlinear systems , 2004, Autom..

[20]  Gildas Besançon,et al.  An Immersion-Based Observer Design for Rank-Observable Nonlinear Systems , 2007, IEEE Transactions on Automatic Control.

[21]  Driss Boutat,et al.  New algorithm for observer error linearization with a diffeomorphism on the outputs , 2009, Autom..

[22]  Ali Zemouche,et al.  A unified Hinfinity adaptive observer synthesis method for a class of systems with both Lipschitz and monotone nonlinearities , 2009, Syst. Control. Lett..

[23]  Hassan Hammouri,et al.  High Gain Observer for Structured Multi-Output Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[24]  Mohammed M'Saad,et al.  High gain observer for a class of non-triangular systems , 2011, Syst. Control. Lett..

[25]  Hassan Hammouri,et al.  Observer Design for MIMO Non-Uniformly Observable Systems , 2012, IEEE Transactions on Automatic Control.

[26]  A. Saberi,et al.  High‐gain observer design for multi‐output systems: Transformation to a canonical form by dynamic output shaping , 2014 .

[27]  Denis V. Efimov,et al.  Design of interval observers for uncertain dynamical systems , 2016, Automation and Remote Control.

[28]  Driss Boutat,et al.  Partial observer normal form for nonlinear system , 2016, Autom..