A detailed mechanism of degradation behaviour of biodegradable as-ECAPed Zn-0.8Mg-0.2Sr with emphasis on localized corrosion attack

[1]  Lijing Yang,et al.  Influence of Enzymes on the In Vitro Degradation Behavior of Pure Zn in Simulated Gastric and Intestinal Fluids , 2022, ACS omega.

[2]  J. Kubásek,et al.  The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusion , 2022, Journal of Alloys and Compounds.

[3]  Hua-nan Liu,et al.  Effect of grain size and volume fraction of eutectic structure on mechanical properties and corrosion behavior of as-cast Zn-Mg binary alloys , 2021, Journal of Materials Research and Technology.

[4]  J. Kubásek,et al.  A Complex Evaluation of the In-Vivo Biocompatibility and Degradation of an Extruded ZnMgSr Absorbable Alloy Implanted into Rabbit Bones for 360 Days , 2021, International Journal of Molecular Sciences.

[5]  J. Kubásek,et al.  Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt. %) alloy processed by equal-channel angular pressing , 2021 .

[6]  J. Kubásek,et al.  Zn–0.8Mg–0.2Sr (wt.%) Absorbable Screws—An In-Vivo Biocompatibility and Degradation Pilot Study on a Rabbit Model , 2021, Materials.

[7]  Jack G. Zhou,et al.  In vivo biocompatibility and degradability of a Zn–Mg–Fe alloy osteosynthesis system , 2021, Bioactive materials.

[8]  J. Kubásek,et al.  Influence of model environment complexity on corrosion mechanism of biodegradable zinc alloys , 2021, Corrosion Science.

[9]  Yufeng Zheng,et al.  Biodegradable Zn–Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies , 2020, Bioactive materials.

[10]  J. Drahokoupil,et al.  Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy - The influence of extrusion parameters on microstructure and mechanical characteristics. , 2020, Journal of the mechanical behavior of biomedical materials.

[11]  J. Drelich,et al.  Albumins inhibit the corrosion of absorbable Zn alloys at initial stages of degradation , 2020 .

[12]  J. Drahokoupil,et al.  ZnMg0.8Ca0.2 (wt%) biodegradable alloy – The influence of thermal treatment and extrusion on microstructural and mechanical characteristics , 2020 .

[13]  G. Chandra,et al.  Biodegradable bone implants in orthopedic applications: a review , 2020 .

[14]  Ping Li Absorbable Zinc-based alloy for craniomaxillofacial osteosynthesis implants , 2020 .

[15]  J. Kubásek,et al.  Characterization of a Zn-Ca5(PO4)3(OH) Composite with a High Content of the Hydroxyapatite Particles Prepared by the Spark Plasma Sintering Process , 2020 .

[16]  Yufeng Zheng,et al.  In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. , 2020, Acta biomaterialia.

[17]  N. Gao,et al.  Microstructure and mechanical properties of a Zn-0.5Cu alloy processed by high-pressure torsion , 2020 .

[18]  Yufeng Zheng,et al.  Alloying design of biodegradable zinc as promising bone implants for load-bearing applications , 2020, Nature Communications.

[19]  Stacy Gates-Rector,et al.  The Powder Diffraction File: a quality materials characterization database , 2019, Powder Diffraction.

[20]  Yufeng Zheng,et al.  Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility. , 2019, Acta biomaterialia.

[21]  Yufeng Zheng,et al.  Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions , 2019, Corrosion Science.

[22]  D. V. Louzguine-Luzgin,et al.  Significant Mechanical Softening of an Al-Y-Ni-Co Metallic Glass on Cold and Hot Rolling , 2019, JOM.

[23]  J. Kubásek,et al.  Thermal Plasma Spraying as a New Approach for Preparation of Zinc Biodegradable Scaffolds: A Complex Material Characterization , 2019, Journal of Thermal Spray Technology.

[24]  J. Kawałko,et al.  Can zinc alloys be strengthened by grain refinement? A critical evaluation of the processing of low-alloyed binary zinc alloys using ECAP , 2019, Materials Science and Engineering: A.

[25]  Diego Mantovani,et al.  Current status and outlook on the clinical translation of biodegradable metals , 2019, Materials Today.

[26]  Yufeng Zheng,et al.  Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design , 2019, Advanced Functional Materials.

[27]  Yufeng Zheng,et al.  Mechanical Strength, Biodegradation, and in Vitro and in Vivo Biocompatibility of Zn Biomaterials. , 2019, ACS applied materials & interfaces.

[28]  Yufeng Zheng,et al.  Enhanced Osseointegration of Zn-Mg Composites by Tuning the Release of Zn Ions with Sacrificial Mg-Rich Anode Design. , 2018, ACS biomaterials science & engineering.

[29]  C. Wen,et al.  Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials. , 2018, Acta biomaterialia.

[30]  F. Witte,et al.  Biodegradable Metals , 2018, Biomaterials Science.

[31]  C. Dong,et al.  Initial formation of corrosion products on pure zinc in simulated body fluid , 2018, Journal of Materials Science & Technology.

[32]  C. Cui,et al.  Fabrication and properties of porous Zn-Ag alloy scaffolds as biodegradable materials , 2018, Materials Chemistry and Physics.

[33]  Dawei Zhang,et al.  Initial formation of corrosion products on pure zinc in saline solution , 2018, Bioactive materials.

[34]  J. Drelich,et al.  The Suitability of Zn–1.3%Fe Alloy as a Biodegradable Implant Material , 2018 .

[35]  S. Virtanen,et al.  Influence of Electrolyte Composition (Simulated Body Fluid vs. Dulbecco’s Modified Eagle’s Medium), Temperature, and Solution Flow on the Biocorrosion Behavior of Commercially Pure Mg , 2017 .

[36]  M. Klinger More features, more tools, more CrysTBox , 2017 .

[37]  G. Yuan,et al.  Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications. , 2017, Journal of the mechanical behavior of biomedical materials.

[38]  Yuping Ren,et al.  Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys , 2017 .

[39]  H. Maier,et al.  Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat. , 2017, Materials science & engineering. C, Materials for biological applications.

[40]  M. Montemor,et al.  Evolution of the in vitro degradation of Zn–Mg alloys under simulated physiological conditions , 2017 .

[41]  Jonas Weissenrieder,et al.  Degradation of zinc in saline solutions, plasma, and whole blood. , 2016, Journal of biomedical materials research. Part B, Applied biomaterials.

[42]  D Mantovani,et al.  Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation. , 2016, Journal of the mechanical behavior of biomedical materials.

[43]  Jun Ma,et al.  Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells , 2016, Scientific Reports.

[44]  Yufeng Zheng,et al.  Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn–1.5Mg alloy , 2016 .

[45]  Yufeng Zheng,et al.  Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application , 2016 .

[46]  Kun Wang,et al.  In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy. , 2015, Journal of biomedical materials research. Part B, Applied biomaterials.

[47]  Yufeng Zheng,et al.  Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr , 2015 .

[48]  S. H. Chen,et al.  Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr , 2015, Scientific Reports.

[49]  Yufeng Zheng,et al.  Progress of biodegradable metals , 2014 .

[50]  D. Thierry,et al.  Composition of corrosion products formed on Zn–Mg, Zn–Al and Zn–Al–Mg coatings in model atmospheric conditions , 2014 .

[51]  Wei Gao,et al.  Effects of Mg on microstructure and corrosion properties of Zn–Mg alloy , 2014 .

[52]  Jeremy Goldman,et al.  Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents , 2013, Advanced materials.

[53]  Yuanming Luo,et al.  Texture effect on corrosion behavior of AZ31 Mg alloy in simulated physiological environment , 2012 .

[54]  D. Nečas,et al.  Gwyddion: an open-source software for SPM data analysis , 2012 .

[55]  J. Kubásek,et al.  Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. , 2011, Acta biomaterialia.

[56]  K. Sadananda,et al.  Role of Internal Stresses on the Incubation Times during Stress Corrosion Cracking , 2011 .

[57]  N. Birbilis,et al.  Revealing the relationship between grain size and corrosion rate of metals , 2010 .

[58]  N. Birbilis,et al.  Effect of Grain Size on Corrosion: A Review , 2010 .

[59]  Gilbert Hénaff,et al.  Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behavior of the aluminum alloy 2024 , 2009 .

[60]  P. Volovitch,et al.  Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn–Mg coating on steel , 2009 .

[61]  E. Willbold,et al.  Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response. , 2007, Journal of biomedical materials research. Part A.

[62]  D Lawrence,et al.  In situ site-specific specimen preparation for atom probe tomography. , 2007, Ultramicroscopy.

[63]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[64]  F. Müller,et al.  Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. , 2006, Acta biomaterialia.

[65]  M. Morishita,et al.  Calorimetric study of MgZn2 and Mg2Zn11 , 2003, International Journal of Materials Research.

[66]  S. Yen,et al.  The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature , 2002 .

[67]  M. Hambidge,et al.  Human zinc deficiency. , 2000, The Journal of nutrition.

[68]  L. L. Dulcie,et al.  Microcalorimeter Energy Dispersive Spectrometry for Low Voltage SEM , 1999, Microscopy and Microanalysis.

[69]  S. Ban,et al.  Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid. , 1995, Biomaterials.

[70]  P. Moser-Veillon Zinc: consumption patterns and dietary recommendations. , 1990, Journal of the American Dietetic Association.

[71]  C. Fleming,et al.  Zinc-induced copper deficiency. , 1988, Gastroenterology.

[72]  Y. Suketa,et al.  Stimulatory effect of zinc on bone formation in tissue culture. , 1987, Biochemical pharmacology.

[73]  M. Sluyters-Rehbach,et al.  The analysis of electrode impedances complicated by the presence of a constant phase element , 1984 .

[74]  R. Shrivastava,et al.  Effect of exposure time on corrosion behavior of zinc-alloy in simulated body fluid solution: Electrochemical and surface investigation , 2021 .

[75]  T. Demir,et al.  Mechanical Testing Standards of Orthopedic Implants , 2016 .

[76]  Yufeng Zheng,et al.  Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn-Mg-Sr alloys as biodegradable metals , 2016 .

[77]  G. Engelhardt,et al.  The biochemical effects of extracellular Zn(2+) and other metal ions are severely affected by their speciation in cell culture media. , 2015, Metallomics : integrated biometal science.

[78]  P. Lejček Grain Boundaries: Description, Structure and Thermodynamics , 2010 .

[79]  C. F. Mills Zinc in Human Biology , 1989, ILSI Human Nutrition Reviews.

[80]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[81]  I. Suzuki The behavior of corrosion products on zinc in sodium chloride solution , 1985 .

[82]  J. C. Smith,et al.  The role of zinc in bone metabolism. , 1974, Clinical orthopaedics and related research.

[83]  I. Barin,et al.  Thermochemical properties of inorganic substances , 1973 .