F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Efficient Long Time Computations of Time-domain Boundary Integrals for 2d and Dissipative Wave Equation Efficient Long Time Computations of Time-domain Boundary Integrals for 2d and Dissipative Wave Equation

[1]  Giovanni Monegato,et al.  Lubich convolution quadratures and their application to problems described by space-time BIEs , 2011, Numerical Algorithms.

[2]  Lehel Banjai,et al.  Multistep and Multistage Convolution Quadrature for the Wave Equation: Algorithms and Experiments , 2010, SIAM J. Sci. Comput..

[3]  Lehel Banjai,et al.  Rapid Solution of the Wave Equation in Unbounded Domains , 2008, SIAM J. Numer. Anal..

[4]  Wolfgang Hackbusch,et al.  Sparse convolution quadrature for time domain boundary integral formulations of the wave equation , 2008 .

[5]  Christian Lubich,et al.  Adaptive, Fast, and Oblivious Convolution in Evolution Equations with Memory , 2006, SIAM J. Sci. Comput..

[6]  C. Lubich,et al.  Fast and Oblivious Convolution Quadrature , 2005, SIAM J. Sci. Comput..

[7]  Martin Costabel,et al.  Time‐Dependent Problems with the Boundary Integral Equation Method , 2004 .

[8]  C. Palencia,et al.  On the numerical inversion of the Laplace transform of certain holomorphic mappings , 2004 .

[9]  C. Lubich Convolution Quadrature Revisited , 2004 .

[10]  B. G. Korenev Bessel Functions and Their Applications , 2002 .

[11]  Christian Lubich,et al.  Fast Convolution for Nonreflecting Boundary Conditions , 2002, SIAM J. Sci. Comput..

[12]  James S. Harris,et al.  Tables of integrals , 1998 .

[13]  Abdul L. Bello,et al.  Tables of Integrals, Series, and Products , 1995 .

[14]  C. Lubich,et al.  On the multistep time discretization of linear\newline initial-boundary value problems and their boundary integral equations , 1994 .

[15]  S. Axler,et al.  Harmonic Function Theory , 1992 .

[16]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .

[17]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[18]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .

[19]  Ernst Hairer,et al.  FAST NUMERICAL SOLUTION OF NONLINEAR VOLTERRA CONVOLUTION EQUATIONS , 1985 .

[20]  J. Crank Tables of Integrals , 1962 .

[21]  L. Ásgeirsson Some hints on huygens' principle and hadamard's conjecture , 1956 .

[22]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[23]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .