Unsupervised segmentation of synthetic aperture Radar sea ice imagery using a novel Markov random field model

Environmental and sensor challenges pose difficulties for the development of computer-assisted algorithms to segment synthetic aperture radar (SAR) sea ice imagery. In this research, in support of operational activities at the Canadian Ice Service, images containing visually separable classes of either ice and water or multiple ice classes are segmented. This work uses image intensity to discriminate ice from water and uses texture features to identify distinct ice types. In order to seamlessly combine image spatial relationships with various image features, a novel Bayesian segmentation approach is developed and applied. This new approach uses a function-based parameter to weight the two components in a Markov random field (MRF) model. The devised model allows for automatic estimation of MRF model parameters to produce accurate unsupervised segmentation results. Experiments demonstrate that the proposed algorithm is able to successfully segment various SAR sea ice images and achieve improvement over existing published methods including the standard MRF-based method, finite Gamma mixture model, and K-means clustering.

[1]  Leen-Kiat Soh,et al.  A dynamic local thresholding technique for sea ice classification , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[2]  H. Derin,et al.  Modeling and segmentation of speckled images using complex data , 1990 .

[3]  Kim C. Partington,et al.  A data fusion algorithm for mapping sea-ice concentrations from Special Sensor Microwave/Imager data , 2000, IEEE Trans. Geosci. Remote. Sens..

[4]  M. Shokr Evaluation of second‐order texture parameters for sea ice classification from radar images , 1991 .

[5]  Leen-Kiat Soh,et al.  Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices , 1999, IEEE Trans. Geosci. Remote. Sens..

[6]  Donald Geman,et al.  Boundary Detection by Constrained Optimization , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Rod Cook,et al.  Optimal approach to SAR image segmentation and classification , 2000 .

[8]  Andrea Baraldi,et al.  An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[10]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Chris OliverbaN An Optimal Approach to SAR Image Segmentation and Classification , 2000 .

[12]  Shengrui Wang,et al.  Segmentation of SAR images , 2002, Pattern Recognit..

[13]  W. F. Weeks,et al.  Detection and classification of ice , 1987 .

[14]  Alan Nichols,et al.  A SAR for Real-Time Ice Reconnaissance , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[15]  H. Tjelmeland,et al.  Speckle Reduction and Maximum Likelihood Classification of Sar Images from Sea Ice Recorded During Mizex 87 , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[16]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[17]  Barbara A. Burns,et al.  Characterization of sea ice types using synthetic aperture radar , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[18]  F. Parmiggiani,et al.  An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[19]  David A. Clausi,et al.  Comparing cooccurrence probabilities and Markov random fields for texture analysis of SAR sea ice imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[20]  R. M. Haralick,et al.  Textural features for image classification. IEEE Transaction on Systems, Man, and Cybernetics , 1973 .

[21]  Chee Sun Won,et al.  Unsupervised segmentation of noisy and textured images using Markov random fields , 1992, CVGIP Graph. Model. Image Process..

[22]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Ramin Samadani,et al.  A finite mixtures algorithm for finding proportions in SAR images , 1995, IEEE Trans. Image Process..

[24]  David G. Barber,et al.  Science issues relating to marine aspects of the cryosphere : Implications for remote sensing , 1992 .

[25]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[26]  C. H. Chen,et al.  Handbook of Pattern Recognition and Computer Vision , 1993 .

[27]  Jun Zhang The mean field theory in EM procedures for Markov random fields , 1992, IEEE Trans. Signal Process..

[28]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[29]  D. Barber,et al.  SAR sea ice discrimination using texture statistics : a multivariate approach , 1991 .

[30]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[31]  Patrick A. Kelly,et al.  Adaptive segmentation of speckled images using a hierarchical random field model , 1988, IEEE Trans. Acoust. Speech Signal Process..

[32]  Bayya Yegnanarayana,et al.  Segmentation of Gabor-filtered textures using deterministic relaxation , 1996, IEEE Trans. Image Process..

[33]  David A Clausi An analysis of co-occurrence texture statistics as a function of grey level quantization , 2002 .

[34]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[35]  David A. Clausi,et al.  Comparison and fusion of co‐occurrence, Gabor and MRF texture features for classification of SAR sea‐ice imagery , 2001 .

[36]  Simon A. Barker Image segmentation using Markov random field models , 1998 .

[37]  Silvana G. Dellepiane,et al.  Discontinuity-adaptive Markov random field model for the segmentation of intensity SAR images , 1999, IEEE Trans. Geosci. Remote. Sens..

[38]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[39]  Jong-Sen Lee,et al.  Speckle analysis and smoothing of synthetic aperture radar images , 1981 .

[40]  Dina E. Melas,et al.  Double Markov random fields and Bayesian image segmentation , 2002, IEEE Trans. Signal Process..

[41]  Rama Chellappa,et al.  Segmentation of polarimetric synthetic aperture radar data , 1992, IEEE Trans. Image Process..

[42]  David A. Clausi,et al.  Unsupervised image segmentation using a simple MRF model with a new implementation scheme , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[43]  E. Nezry,et al.  Structure detection and statistical adaptive speckle filtering in SAR images , 1993 .

[44]  David B. Cooper,et al.  Simple Parallel Hierarchical and Relaxation Algorithms for Segmenting Noncausal Markovian Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  F. Carsey,et al.  Review and status of remote sensing of sea ice , 1989 .