Modeling biological systems with an improved fractional Gompertz law

[1]  I. Klapper,et al.  Mathematical modeling of dispersal phenomenon in biofilms. , 2019, Mathematical biosciences.

[2]  L. Frunzo,et al.  Nutrient removal from high strength nitrate containing industrial wastewater using Chlorella sp. strain ACUF_802 , 2018, Annals of Microbiology.

[3]  Andrea Giusti,et al.  Scott-Blair models with time-varying viscosity , 2018, Appl. Math. Lett..

[4]  V. E. Tarasov No nonlocality. No fractional derivative , 2018, Commun. Nonlinear Sci. Numer. Simul..

[5]  L. Frunzo,et al.  Continuum and discrete approach in modeling biofilm development and structure: a review , 2018, Journal of mathematical biology.

[6]  Agnieszka B. Malinowska,et al.  Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications , 2018 .

[7]  H. Konno,et al.  Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process , 2018 .

[8]  Enrica Pirozzi,et al.  Colored noise and a stochastic fractional model for correlated inputs and adaptation in neuronal firing , 2018, Biological Cybernetics.

[9]  A. Panico,et al.  Experimental study for the reduction of CO2 emissions in wastewater treatment plant using microalgal cultivation , 2017 .

[10]  R. Sawers,et al.  Improving biohydrogen productivity by microbial dark- and photo-fermentations: Novel data and future approaches , 2017 .

[11]  Andrea Giusti,et al.  A comment on some new definitions of fractional derivative , 2017, Nonlinear Dynamics.

[12]  Francesco Mainardi,et al.  The fractional Dodson diffusion equation: a new approach , 2017, 1709.08994.

[13]  E. Tjørve,et al.  The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family , 2017, PloS one.

[14]  R. Almeida What is the best fractional derivative to fit data , 2017, 1704.00609.

[15]  L. Frunzo,et al.  Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products. , 2017, Bioresource technology.

[16]  Some fractional integral inequalities involving $$\varvec{m}$$m-convex functions , 2017 .

[17]  Ricardo Almeida,et al.  A Caputo fractional derivative of a function with respect to another function , 2016, Commun. Nonlinear Sci. Numer. Simul..

[18]  Francesco Mainardi,et al.  On the propagation of transient waves in a viscoelastic Bessel medium , 2016 .

[19]  A. Di Crescenzo,et al.  Analysis of a growth model inspired by Gompertz and Korf laws, and an analogous birth-death process. , 2016, Mathematical biosciences.

[20]  L. Frunzo,et al.  Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures. , 2016, Bioresource technology.

[21]  S. Rice,et al.  Biofilms: an emergent form of bacterial life , 2016, Nature Reviews Microbiology.

[22]  Paolo Paradisi,et al.  Fractional kinetics emerging from ergodicity breaking in random media. , 2015, Physical review. E.

[23]  E. Orsingher,et al.  Population models at stochastic times , 2014, Advances in Applied Probability.

[24]  S. W. Schoombie,et al.  A proposed fractional-order Gompertz model and its application to tumour growth data. , 2015, Mathematical medicine and biology : a journal of the IMA.

[25]  Francesco Mainardi,et al.  A dynamic viscoelastic analogy for fluid-filled elastic tubes , 2015, 1505.06694.

[26]  Thomas B. L. Kirkwood,et al.  Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’ , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  Piet N.L. Lens,et al.  A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products , 2015 .

[28]  Roberto Garrappa,et al.  Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions , 2015, SIAM J. Numer. Anal..

[29]  Alessandra Polettini,et al.  Biohydrogen production from dark fermentation of cheese whey: Influence of pH , 2014 .

[30]  R. Gorenflo,et al.  Mittag-Leffler Functions, Related Topics and Applications , 2014, Springer Monographs in Mathematics.

[31]  U. Diwekar,et al.  A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions , 2014 .

[32]  V. Giorno,et al.  Stochastic roots of growth phenomena , 2014 .

[33]  Gianni Pagnini,et al.  Short note on the emergence of fractional kinetics , 2014, 1404.0215.

[34]  Francesco Mainardi,et al.  Fractional relaxation with time-varying coefficient , 2014 .

[35]  Roberto Garrappa,et al.  Evaluation of generalized Mittag–Leffler functions on the real line , 2013, Adv. Comput. Math..

[36]  A Polettini,et al.  A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. , 2013, Waste management.

[37]  L. Frunzo,et al.  Dynamic mathematical modeling of sulfate reducing gas-lift reactors , 2012 .

[38]  G. Pagnini Erdélyi-Kober fractional diffusion , 2011, 1112.0890.

[39]  Federico Polito,et al.  On a fractional linear birth-death process , 2011 .

[40]  L. Beghin,et al.  Fractional Poisson processes and related planar random motions , 2009 .

[41]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[42]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[43]  R. Gorenflo,et al.  A fractional generalization of the Poisson processes , 2007, math/0701454.

[44]  N. Laskin Fractional Poisson process , 2003 .

[45]  Francesco Mainardi,et al.  Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.

[46]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[47]  Awwa,et al.  Standard Methods for the examination of water and wastewater , 1999 .

[48]  P. Heuberger,et al.  Calibration of process-oriented models , 1995 .

[49]  T. Wheldon Mathematical models in cancer research , 1988 .

[50]  Charles Thomas Wyville Thomson IX. On the embryogeny of antedon rosaceus, linck (comatula rosacea of lamarck) , 1865, Philosophical Transactions of the Royal Society of London.