Remote Sensing of Drought: Vegetation, Soil Moisture, and Data Assimilation

Application of remote sensing is emerging for operational drought monitoring and early warning as it offers opportunities for assessing drought from different perspectives. This chapter provides an overview of the advances in monitoring different types of drought using satellite remote-sensing observations with an example on agricultural drought assessment over the continental U.S. While the main constraint in remote sensing of drought is attributed to limited duration of records, this can be overcome by merging the remote-sensing observations with model simulations through data assimilation. The application of data assimilation as a promising approach is described for drought monitoring over the Pacific Northwest US.

[1]  V. Levizzani,et al.  Quantitative Precipitation Estimation from Earth Observation Satellites , 2013 .

[2]  Maosheng Zhao,et al.  Development of a global evapotranspiration algorithm based on MODIS and global meteorology data , 2007 .

[3]  Ali Ahmadalipour,et al.  Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation , 2013 .

[4]  Kuolin Hsu,et al.  Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter , 2005 .

[5]  Thomas H. Painter,et al.  Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations , 2013 .

[6]  Hamid Moradkhani,et al.  Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting , 2012 .

[7]  J. Dozier,et al.  Inroads of remote sensing into hydrologic science during the WRR era , 2015 .

[8]  Hongxiang Yan,et al.  Combined assimilation of streamflow and satellite soil moisture with the particle filter and geostatistical modeling , 2016 .

[9]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[10]  Yoshihide Wada,et al.  High‐resolution modeling of human and climate impacts on global water resources , 2013 .

[11]  J. Famiglietti,et al.  Global terrestrial water storage capacity and flood potential using GRACE , 2009 .

[12]  Luca Brocca,et al.  Data Assimilation of Satellite Soil Moisture into Rainfall-Runoff Modelling: A Complex Recipe? , 2015, Remote. Sens..

[13]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[14]  H. Moradkhani Hydrologic Remote Sensing and Land Surface Data Assimilation , 2008, Sensors.

[15]  I. Sandholt,et al.  A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status , 2002 .

[16]  Yi Y. Liu,et al.  Trend-preserving blending of passive and active microwave soil moisture retrievals , 2012 .

[17]  Hongxiang Yan,et al.  Improving Soil Moisture Profile Prediction With the Particle Filter-Markov Chain Monte Carlo Method , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Thomas H. Painter,et al.  Interpretation of snow properties from imaging spectrometry , 2009 .

[19]  S. Seneviratne,et al.  Basin scale estimates of evapotranspiration using GRACE and other observations , 2004 .

[20]  Soroosh Sorooshian,et al.  Evolution of ensemble data assimilation for uncertainty quantification using the particle filter‐Markov chain Monte Carlo method , 2012 .

[21]  M. Roderick,et al.  The contribution of reduction in evaporative cooling to higher surface air temperatures during drought , 2014 .

[22]  J. Kimball,et al.  Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia , 2015 .

[23]  Hamid Moradkhani,et al.  Towards improved post‐processing of hydrologic forecast ensembles , 2014 .

[24]  Matthew Rodell,et al.  Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land‐atmosphere water balance , 2005 .

[25]  B. Chao,et al.  Terrestrial water storage anomalies of Yangtze River Basin droughts observed by GRACE and connections with ENSO , 2015 .

[26]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[27]  Dennis P. Lettenmaier,et al.  Drought Monitoring for Washington State: Indicators and Applications , 2011 .

[28]  Soroosh Sorooshian,et al.  Hydrological modelling and the water cycle : coupling the atmospheric and hydrological models , 2008 .

[29]  M. Svoboda,et al.  Centennial drought outlook over the CONUS using NASA‐NEX downscaled climate ensemble , 2017 .

[30]  Thomas J. Jackson,et al.  Soil moisture retrieval from AMSR-E , 2003, IEEE Trans. Geosci. Remote. Sens..

[31]  A. Viña,et al.  Drought Monitoring with NDVI-Based Standardized Vegetation Index , 2002 .

[32]  Christian Heipke,et al.  MULTIPLE-MODEL BASED VERIFICATION OF JAPANESE ROAD DATA , 2010 .

[33]  F. B. Desta,et al.  Experimental and numerical findings on the long‐term evolution of migrating alternate bars in alluvial channels , 2012 .

[34]  Lifeng Luo,et al.  Monitoring and predicting the 2007 U.S. drought , 2007 .

[35]  B. Rock,et al.  Detection of changes in leaf water content using Near- and Middle-Infrared reflectances , 1989 .

[36]  Dongryeol Ryu,et al.  Correcting Unintended Perturbation Biases in Hydrologic Data Assimilation , 2009 .

[37]  Zhiming Zhan,et al.  Designing of the perpendicular drought index , 2007 .

[38]  Wade T. Crow,et al.  Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model , 2008 .

[39]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[40]  Ralph Ferraro,et al.  Snow Cover Monitoring from Remote-Sensing Satellites:Possibilities for Drought Assessment , 2012 .

[41]  M. Ek,et al.  Evaluation of multi-model simulated soil moisture in NLDAS-2 , 2014 .

[42]  D. Lobell,et al.  Greater Sensitivity to Drought Accompanies Maize Yield Increase in the U.S. Midwest , 2014, Science.

[43]  Ivan Csiszar,et al.  Automated Monitoring of Snow Cover over North America with Multispectral Satellite Data , 2000 .

[44]  S. Pfister,et al.  Assessing the Environmental Impact of Water Consumption by Energy Crops Grown in Spain , 2013 .

[45]  C. Donlon,et al.  The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission , 2012 .

[46]  M. Langer,et al.  Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard — Implications for MODIS LST based permafrost monitoring , 2011 .

[47]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[48]  Kevin P. Price,et al.  Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains , 2001 .

[49]  N. McDowell,et al.  Numerical Terradynamic Simulation Group 1-2013 A Remotely Sensed Global Terrestrial Drought Severity Index , 2017 .

[50]  Z. Wan,et al.  Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA , 2004 .

[51]  Luca Brocca,et al.  Assimilation of Surface- and Root-Zone ASCAT Soil Moisture Products Into Rainfall–Runoff Modeling , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Edward J. Kim,et al.  A blended global snow product using visible, passive microwave and scatterometer satellite data , 2011 .

[53]  A. Simmons,et al.  The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy , 2014 .

[54]  S. Vicente‐Serrano,et al.  A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index , 2009 .

[55]  J. Kimball,et al.  Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE , 2012 .

[56]  F. Rembold,et al.  Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery , 2011 .

[57]  D. Jupp,et al.  The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review , 1998 .

[58]  G. Carbone,et al.  Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data , 2010 .

[59]  João Paulo Ramos Teixeira,et al.  Remote sensing of drought: Progress, challenges and opportunities , 2015 .

[60]  Y. Hong,et al.  Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response , 2004 .

[61]  S. Seneviratne,et al.  Investigating soil moisture-climate interactions in a changing climate: A review , 2010 .

[62]  R. Fensholt,et al.  Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment , 2003 .

[63]  M. Palecki,et al.  THE DROUGHT MONITOR , 2002 .

[64]  S. Idso,et al.  Canopy temperature as a crop water stress indicator , 1981 .

[65]  D. McLaughlin,et al.  Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .

[66]  Martha C. Anderson,et al.  Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States , 2011 .

[67]  P. Barbosa,et al.  Assessment of drought damages and their uncertainties in Europe , 2015 .

[68]  Christian Onof,et al.  A Comparative Performance Analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for Hydrological Applications over Andean–Amazon River Basins , 2014 .

[69]  Matthew Rodell,et al.  The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US , 2002 .

[70]  Compton J. Tucker,et al.  Satellite Remote Sensing of Drought Conditions , 1987, Planning for Drought.

[71]  J. Eitzinger,et al.  The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications , 2013 .

[72]  S. Sorooshian,et al.  PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies , 2015 .

[73]  J. Randerson,et al.  Satellite observations of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon , 2013 .

[74]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[75]  Paul R. Houser,et al.  Scanning multichannel microwave radiometer snow water equivalent assimilation , 2007 .

[76]  Cynthia Rosenzweig,et al.  Potential evapotranspiration and the likelihood of future drought , 1990 .

[77]  M. Rodell,et al.  Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin , 2008 .

[78]  Sepideh Khajehei A Multivariate Modeling Approach for Generating Ensemble Climatology Forcing for Hydrologic Applications , 2015 .

[79]  S. Tarantola,et al.  Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications , 2002 .

[80]  D. McLaughlin,et al.  Quantifying Precipitation Uncertainty for Land Data Assimilation Applications , 2015 .

[81]  F. Kogan Application of vegetation index and brightness temperature for drought detection , 1995 .

[82]  Eric F. Wood,et al.  Evaluation of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) for assessment of large-scale meteorological drought , 2015 .

[83]  James P. Verdin,et al.  A five‐year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States , 2007 .

[84]  C. M. DeChant,et al.  Analyzing the sensitivity of drought recovery forecasts to land surface initial conditions , 2015 .

[85]  N. DiGirolamo,et al.  MODIS snow-cover products , 2002 .

[86]  W. Feng,et al.  Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground‐based measurements , 2013 .

[87]  Ralph Ferraro,et al.  Special sensor microwave imager derived global rainfall estimates for climatological applications , 1997 .

[88]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[89]  Wade T. Crow,et al.  An adaptive ensemble Kalman filter for soil moisture data assimilation , 2007 .

[90]  Hamid Moradkhani,et al.  Toward a reliable prediction of seasonal forecast uncertainty: Addressing model and initial condition uncertainty with ensemble data assimilation and Sequential Bayesian Combination , 2014 .

[91]  Hamid Moradkhani,et al.  Toward reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation , 2012 .

[92]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[93]  Maosheng Zhao,et al.  Improvements to a MODIS global terrestrial evapotranspiration algorithm , 2011 .

[94]  G. Jia,et al.  Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data , 2013 .

[95]  S. Sorooshian,et al.  Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting , 2006 .

[96]  Dennis P. Lettenmaier,et al.  Soil Moisture Drought in China, 1950–2006 , 2011 .

[97]  Yang Hong,et al.  Evaluating Four Multisatellite Precipitation Estimates over the Diaoyu Islands during Typhoon Seasons , 2016 .

[98]  S. Tarantola,et al.  Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 - Theoretical approach , 2002 .

[99]  Erik T. Crosman,et al.  MODIS-derived surface temperature of the Great Salt Lake , 2009 .

[100]  D. Lettenmaier,et al.  Is climate change implicated in the 2013–2014 California drought? A hydrologic perspective , 2015 .

[101]  Nuno Carvalhais,et al.  Estimating air surface temperature in Portugal using MODIS LST data , 2012 .

[102]  T. Tadesse,et al.  The Vegetation Drought Response Index (VegDRI): A New Integrated Approach for Monitoring Drought Stress in Vegetation , 2008 .

[103]  V. Lakshmi,et al.  A comparison of SNOTEL and AMSR-E snow water equivalent data sets in western US watersheds , 2011 .

[104]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[105]  J. Dozier Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper , 1989 .

[106]  N. Molotch,et al.  Comparison of ground‐based and airborne snow surface albedo parameterizations in an alpine watershed: Impact on snowpack mass balance , 2006 .

[107]  Qi Zhang,et al.  GRACE-Based Hydrological Drought Evaluation of the Yangtze River Basin, China , 2016 .

[108]  Jianxi Huang,et al.  Assessing the remotely sensed Drought Severity Index for agricultural drought monitoring and impact analysis in North China , 2016 .

[109]  Suhung Shen,et al.  Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature , 2011 .

[110]  Saeid Eslamian,et al.  Hydrologic Prediction and Uncertainty Quantification , 2014, Handbook of Engineering Hydrology (Three-Volume Set).

[111]  V. Singh,et al.  A review of drought concepts , 2010 .

[112]  Qiming Qin,et al.  Monitoring Drought over the Conterminous United States Using MODIS and NCEP Reanalysis-2 Data , 2010 .

[113]  Yi Y. Liu,et al.  Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals , 2011 .

[114]  Kuolin Hsu,et al.  Hydrological Modelling and the Water Cycle , 2008 .

[115]  Bailing Li,et al.  Assimilation of GRACE Terrestrial Water Storage Observations into a Land Surface Model for the Assessment of Regional Flood Potential , 2015, Remote. Sens..

[116]  F. Kogan,et al.  Global Drought Watch from Space , 1997 .

[117]  A. Hou,et al.  The Global Precipitation Measurement Mission , 2014 .

[118]  E. Wood,et al.  A simulated soil moisture based drought analysis for the United States , 2004 .

[119]  A. Aghakouchak,et al.  Multivariate Standardized Drought Index: A parametric multi-index model , 2013 .

[120]  Martha C. Anderson,et al.  An Intercomparison of Drought Indicators Based on Thermal Remote Sensing and NLDAS-2 Simulations with U.S. Drought Monitor Classifications , 2013 .

[121]  J. Qu,et al.  NMDI: A normalized multi‐band drought index for monitoring soil and vegetation moisture with satellite remote sensing , 2007 .

[122]  Manuel Martín-Neira,et al.  SMOS: The Payload , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[123]  Michael H. Cosh,et al.  Assimilation of Remotely Sensed Soil Moisture and Snow Depth Retrievals for Drought Estimation , 2014 .

[124]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .