Femtomolar DNA detection by parallel colorimetric darkfield microscopy of functionalized gold nanoparticles.

We introduce a sensing platform for specific detection of DNA based on the formation of gold nanoparticles dimers on a surface. The specific coupling of a second gold nanoparticle to a surface bound nanoparticle by DNA hybridization results in a red shift of the nanoparticle plasmon peak. This shift can be detected as a color change in the darkfield image of the gold nanoparticles. Parallel detection of hundreds of gold nanoparticles with a calibrated true color camera enabled us to detect specific binding of target DNA. This enables a limit of detection below 1.0×10(-14) M without the need for a spectrometer or a scanning stage.

[1]  C. Tang,et al.  Optical Detection of Human Papillomavirus Type 16 and Type 18 by Sequence Sandwich Hybridization With Oligonucleotide-Functionalized Au Nanoparticles , 2009, IEEE Transactions on NanoBioscience.

[2]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[3]  R. Rabadán,et al.  Geographic dependence, surveillance, and origins of the 2009 influenza A (H1N1) virus. , 2009, The New England journal of medicine.

[4]  D. Ginzinger Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. , 2002, Experimental hematology.

[5]  L. Blum,et al.  DNA biosensors and microarrays. , 2008, Chemical reviews.

[6]  Roberto Corradini,et al.  Ultrasensitive detection of non-amplified genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging. , 2010, Biosensors & bioelectronics.

[7]  Peter Nordlander,et al.  Heterodimers: plasmonic properties of mismatched nanoparticle pairs. , 2010, ACS nano.

[8]  Dorothee Wasserberg,et al.  Immunosensing by colorimetric darkfield microscopy of individual gold nanoparticle-conjugates , 2010 .

[9]  D. A. Stuart,et al.  Biological applications of localised surface plasmonic phenomenae. , 2005, IEE proceedings. Nanobiotechnology.

[10]  Chad A Mirkin,et al.  The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. , 2009, ACS nano.

[11]  Pratibha Pandey,et al.  Colorimetric detection of nucleic acid signature of shiga toxin producing Escherichia coli using gold nanoparticles. , 2010, Journal of nanoscience and nanotechnology.

[12]  R. Corn,et al.  Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. , 2001, Analytical chemistry.

[13]  Min Hwan Kim,et al.  Real-time colorimetric detection of target DNA using isothermal target and signaling probe amplification and gold nanoparticle cross-linking assay. , 2011, Biosensors & bioelectronics.

[14]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[15]  Jeffrey Perkel,et al.  SNP genotyping: six technologies that keyed a revolution , 2008, Nature Methods.

[16]  C. Mirkin,et al.  Homogeneous, Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides , 2000 .

[17]  Chad A Mirkin,et al.  A bio-bar-code assay based upon dithiothreitol-induced oligonucleotide release. , 2005, Analytical chemistry.

[18]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[19]  Chad A Mirkin,et al.  Bio-bar-code-based DNA detection with PCR-like sensitivity. , 2004, Journal of the American Chemical Society.

[20]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[21]  A Paul Alivisatos,et al.  Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. , 2005, Nano letters.

[22]  V W Weedn,et al.  Real-time microchip PCR for detecting single-base differences in viral and human DNA. , 1998, Analytical chemistry.

[23]  Yeechi Chen,et al.  Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. , 2010, Journal of the American Chemical Society.

[24]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[25]  Chad A Mirkin,et al.  Gold nanoparticle probes for the detection of nucleic acid targets. , 2006, Clinica chimica acta; international journal of clinical chemistry.

[26]  Chad A Mirkin,et al.  Maximizing DNA loading on a range of gold nanoparticle sizes. , 2006, Analytical chemistry.

[27]  Kemin Wang,et al.  Enhanced surface plasmon resonance with the modified catalytic growth of Au nanoparticles. , 2007, Biosensors & bioelectronics.

[28]  Vivek Kapur,et al.  Performance evaluation of five commercial real-time PCR reagent systems using TaqMan assays for B. anthracis detection. , 2008, Clinical biochemistry.

[29]  Chad A. Mirkin,et al.  The Structural Characterization of Oligonucleotide-Modified Gold Nanoparticle Networks Formed by DNA Hybridization , 2004 .

[30]  Lin He,et al.  Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization , 2000 .

[31]  David A. Schultz,et al.  Single-target molecule detection with nonbleaching multicolor optical immunolabels. , 2000, Proceedings of the National Academy of Sciences of the United States of America.