Nonlinear antenna technology

Nonlinear antennas combine advances in nonlinear dynamics, active antenna design, and analog microelectronics to generate beam steering and beam forming across an array of nonlinear oscillators. Nonlinear antennas exploit two phenomena typically shunned in traditional designs: nonlinear unit cells and interelement coupling. The design stems from nonlinear coupled differential equation analysis that by virtue of the dynamic control is far less complex than the linear counterparts by eliminating the need for phase shifters and beam forming computers. These advantages arise from incorporating nonlinear dynamics rather than limiting the system to linear quasisteady state operation. A theoretical framework describing beam shaping and beam forming by exploiting the phase, amplitude, and coupling dynamics of nonlinear oscillator arrays is presented. Experimental demonstration of nonlinear beam steering is realized using analog microelectronics.

[1]  Robert A. York,et al.  A continuum model of the dynamics of coupled oscillator arrays for phase-shifterless beam scanning , 1999 .

[2]  T. Itoh,et al.  Active integrated antennas , 1997 .

[3]  Grigory V. Osipov,et al.  Synchronized clusters and multistability in arrays of oscillators with different natural frequencies , 1998 .

[4]  I. Peterson Step in Time , 1991 .

[5]  W. Ditto,et al.  Taming spatiotemporal chaos with disorder , 1995, Nature.

[6]  Kurt Wiesenfeld,et al.  Manipulated Synchronization: Beam Steering in Phased Arrays , 2000, Int. J. Bifurc. Chaos.

[7]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[8]  R. J. Pogorzelski A two-dimensional coupled oscillator array , 2000 .

[9]  P. Holmes,et al.  The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model , 1982, Journal of mathematical biology.

[10]  Wiesenfeld,et al.  Synchronization transitions in a disordered Josephson series array. , 1996, Physical review letters.

[11]  E. Mosekilde,et al.  Bifurcation in a Forced Self-Oscillatory System with Spatial Degrees of Freedom , 1993 .

[12]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[13]  T. Heath Difference Pattern Beam Steering of Coupled, Nonlinear Oscillator Arrays , 2001 .

[14]  Robert A. York,et al.  Oscillator array dynamics with broadband N-port coupling networks , 1994 .

[15]  Robert A. York,et al.  A mode locked array of coupled phase locked loops , 1995 .

[16]  William L. Ditto,et al.  Techniques for the control of chaos , 1995 .

[17]  Roy,et al.  Coherence and phase dynamics of spatially coupled solid-state lasers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[18]  The response of a van der Pol oscillator to a modulated amplitude sinusoidal input , 1990 .

[19]  J. F. Diouris,et al.  Sensitivity analysis of the performance of a diversity receiver , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[20]  John Guckenheimer,et al.  Dynamics of the Van der Pol equation , 1980 .

[21]  Robert A. York,et al.  Continuum modeling of the dynamics of externally injection-locked coupled oscillator arrays , 1999 .

[22]  Robert A. York,et al.  Chaos in microwave antenna arrays , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[23]  Zoya Popovic,et al.  Active and quasi - optical arrays for solid - state power combining , 1997 .

[24]  Carver A. Mead,et al.  Scanners for visualizing activity of analog VLSI circuitry , 1991 .

[25]  S. Strogatz,et al.  Frequency locking in Josephson arrays: Connection with the Kuramoto model , 1998 .

[26]  Noh-Hoon Myung,et al.  A new beam-scanning technique by controlling the coupling angle in a coupled oscillator array , 1998 .

[27]  S. Strogatz Exploring complex networks , 2001, Nature.

[28]  Ted H. Heath Synchronization and phase dynamics of coupled oscillators , 1999 .

[29]  Robert A. York,et al.  Enhanced scanning range of coupled oscillator arrays utilizing frequency multipliers , 1995, IEEE Antennas and Propagation Society International Symposium. 1995 Digest.

[30]  M. Simoni,et al.  Variable linear-range subthreshold OTA , 1997 .

[31]  Wiesenfeld,et al.  Averaged equations for Josephson junction series arrays. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  R. Douglas,et al.  A silicon neuron , 1991, Nature.

[33]  B. Huberman,et al.  Chaotic states and routes to chaos in the forced pendulum , 1982 .

[34]  Robert A. York,et al.  Influence of the oscillator equivalent circuit on the stable modes of parallel-coupled oscillators , 1997 .

[35]  V S Anishchenko,et al.  Phase-frequency synchronization in a chain of periodic oscillators in the presence of noise and harmonic forcings. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  R. Rand,et al.  Dynamics of two strongly coupled van der pol oscillators , 1982 .

[37]  J. Brant Arseneau,et al.  VLSI and neural systems , 1990 .

[38]  T. Itoh,et al.  Injection- and phase-locking techniques for beam control [antenna arrays] , 1998 .