Backward Raman amplification in the Langmuir wavebreaking regime

In plasma-based backward Raman amplifiers, the output pulse intensity increases with the input pump pulse intensity, as long as the Langmuir wave mediating energy transfer from the pump to the seed pulse remains intact. However, at high pump intensity, the Langmuir wave breaks, at which point the amplification efficiency may no longer increase with the pump intensity. Numerical simulations presented here, employing a one-dimensional Vlasov-Maxwell code, show that, although the amplification efficiency remains high when the pump only mildly exceeds the wavebreaking threshold, the efficiency drops precipitously at larger pump intensities.

[1]  E. Gross,et al.  Model for Collision Processes in Gases: Small-Amplitude Oscillations of Charged Two-Component Systems , 1956 .

[2]  John M. Dawson,et al.  Nonlinear Electron Oscillations in a Cold Plasma , 1959 .

[3]  E. Bedrosian A Product Theorem for Hilbert Transforms , 1963 .

[4]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[5]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[6]  W. Kruer,et al.  The Physics of Laser Plasma Interactions , 2019 .

[7]  M. R. Feix,et al.  A nonperiodic Euler–Vlasov code for the numerical simulation of laser–plasma beat wave acceleration and Raman scattering , 1990 .

[8]  M. Shoucri,et al.  Stimulated Raman scattering: Close correspondence of Vlasov simulation and coupled modes , 1992 .

[9]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[10]  M. Shoucri,et al.  An Eulerian Vlasov-Hilbert Code for the Numerical Simulation of the Interaction of High-Frequency Electromagnetic Waves with Plasma , 1995 .

[11]  S. Gedney An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices , 1996 .

[12]  Michael D. Perry,et al.  Ultrahigh‐Intensity Lasers: Physics of the Extreme on a Tabletop , 1998 .

[13]  Alexander Pukhov,et al.  Superradiant Amplification of an Ultrashort Laser Pulse in a Plasma by a Counterpropagating Pump , 1998 .

[14]  Gennady Shvets,et al.  FAST COMPRESSION OF LASER BEAMS TO HIGHLY OVERCRITICAL POWERS , 1999 .

[15]  N. Fisch,et al.  Detuned raman amplification of short laser pulses in plasma , 2000, Physical review letters.

[16]  Ping,et al.  Demonstration of ultrashort laser pulse amplification in plasmas by a counterpropagating pumping beam , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Stimulated raman scattering of rapidly amplified short laser pulses. , 2000, Physical review letters.

[18]  Gennady Shvets,et al.  Ultra-powerful compact amplifiers for short laser pulses , 2000 .

[19]  N. Fisch,et al.  Suppression of superluminous precursors in high-power backward Raman amplifiers. , 2001, Physical review letters.

[20]  N. Fisch,et al.  Robustness of laser phase fronts in backward Raman amplifiers , 2002 .

[21]  N. Fisch,et al.  Raman amplification of ultrashort laser pulses in microcapillary plasmas. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  N. Fisch,et al.  Operating Regime for a Backward Raman Laser Amplifier in Preformed Plasma , 2003 .

[23]  Vladimir M. Malkin,et al.  Generation of ultrahigh intensity laser pulses , 2003 .

[24]  N. Fisch,et al.  Operating Regime for a Backward Raman Laser Amplifier in Preformed Plasma , 2003 .

[25]  N. Fisch,et al.  Random density inhomogeneities and focusability of the output pulses for plasma-based powerful backward Raman amplifiers , 2003 .

[26]  Szymon Suckewer,et al.  Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma. , 2004, Physical review letters.

[27]  Pump side scattering in ultrapowerful backward Raman amplifiers. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  N. Fisch,et al.  Finite-duration seeding effects in powerful backward Raman amplifiers. , 2004 .

[29]  A. Balakin,et al.  Laser pulse amplification upon Raman backscattering in plasma produced in dielectric capillaries , 2004 .

[30]  N. Fisch,et al.  Manipulating ultraintense laser pulses in plasmas , 2005 .

[31]  Electron kinetic effects on Raman backscatter in plasmas. , 2005, Physical review letters.

[32]  S. Suckewer,et al.  Reaching nonlinear regime in Raman amplification of ultrashort laser pulses , 2005, 2005 Quantum Electronics and Laser Science Conference.

[33]  Vladimir T. Tikhonchuk,et al.  Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime , 2006 .

[34]  N. Fisch,et al.  Relic crystal-lattice effects on Raman compression of powerful x-ray pulses in plasmas. , 2007, Physical review letters.

[35]  N. Fisch,et al.  Compression of powerful x-ray pulses to attosecond durations by stimulated Raman backscattering in plasmas. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Szymon Suckewer,et al.  A compact double-pass Raman backscattering amplifier/compressora) , 2007 .

[37]  Effect of nonlinear Landau damping in plasma-based backward Raman amplifier , 2009 .

[38]  N. Fisch,et al.  Quasitransient regimes of backward Raman amplification of intense x-ray pulses. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  N. Fisch,et al.  Quasitransient backward Raman amplification of powerful laser pulses in dense plasmas with multicharged ions , 2010 .

[40]  P Audebert,et al.  Experimental evidence of short light pulse amplification using strong-coupling stimulated brillouin scattering in the pump depletion regime. , 2010, Physical review letters.

[41]  Peter A. Norreys,et al.  Simulations of efficient Raman amplification into the multipetawatt regime , 2010 .

[42]  Vladimir M. Malkin,et al.  Numerical modeling of quasitransient backward Raman amplification of laser pulses in moderately undercritical plasmas with multicharged ions , 2011 .

[43]  Nikolai Yampolsky,et al.  Limiting effects on laser compression by resonant backward Raman scattering in modern experiments , 2011 .

[44]  S. M. Wiggins,et al.  Experimental investigation of chirp pulse Raman amplification in plasma , 2011, Optics + Optoelectronics.

[45]  Chirped pulse Raman amplification in plasma , 2011 .

[46]  N. Fisch,et al.  Laser duration and intensity limits in plasma backward Raman amplifiers , 2012 .

[47]  N. Fisch,et al.  Seed laser chirping for enhanced backward Raman amplification in plasmas. , 2012, Physical review letters.

[48]  N. Fisch,et al.  Geometrical constraints on plasma couplers for Raman compression , 2012 .

[49]  A. B. Langdon,et al.  Threshold for electron trapping nonlinearity in Langmuir waves , 2012, 1208.3864.

[50]  Amplification of ultrashort laser pulses by brillouin backscattering in plasmas. , 2013, Physical review letters.

[51]  Spectral characteristics of ultra-short laser pulses in plasma amplifiers , 2013 .

[52]  Pulse shaping during Raman-seed amplification for short laser pulses. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Fast multidimensional model for the simulation of Raman amplification in plasma. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  N. Fisch,et al.  Key plasma parameters for resonant backward Raman amplification in plasma , 2014 .

[55]  G. Lehmann,et al.  Non-filamentated ultra-intense and ultra-short pulse fronts in three-dimensional Raman seed amplification , 2014 .

[56]  I. Yakovlev Stretchers and compressors for ultra-high power laser systems , 2014 .

[57]  Xiaofeng Wei,et al.  Production of Single Pulse by Landau Damping for Backward Raman Amplification in Plasma , 2014, IEEE Transactions on Plasma Science.

[58]  N. Fisch,et al.  Saturation of the leading spike growth in backward Raman amplifiers , 2014, 1409.5195.

[59]  S. Depierreux,et al.  Laser light triggers increased Raman amplification in the regime of nonlinear Landau damping , 2014, Nature Communications.