Numerical Fatigue Analysis of Induction-Hardened and Mechanically Post-Treated Steel Components

This paper presents a numerical simulation chain covering induction hardening (IH), superimposed stroke peening (StrP) as mechanical post-treatment, and a final fatigue assessment considering local material properties. Focusing on a notched round specimen as representative for engineering components, firstly, the electro-magnetic-thermal simulation of the inductive heating is performed with the software Comsol®. Secondly, the thermo-metallurgical-mechanical analysis of the hardening process is conducted by means of a user-defined interface, utilizing the software Sysweld®. Thirdly, mechanical post-treatment is numerically simulated by Abaqus®. Finally, a strain-based approach considering the evaluated local material properties is applied, which reveals sound accordance to the fatigue tests results, exhibiting a minor conservative deviation of only up to two per cent, which validates the applicability of the presented numerical fatigue approach.

[1]  R. Fajkoš,et al.  Influence of Induction Hardening on Wear Resistance in Case of Rolling Contact , 2016 .

[2]  Vigilio Fontanari,et al.  Fatigue behaviour of induction hardened notched components , 1999 .

[3]  D. Landek,et al.  Computer simulation of induction hardening , 2004 .

[4]  Sean A. McKelvey,et al.  Stress-Based Uniaxial Fatigue Analysis Using Methods Described in FKM-Guideline , 2012, Journal of Failure Analysis and Prevention.

[5]  Sinan Korkmaz Extension of the Uniform Material Law for High Strength Steels , 2008 .

[6]  Lars-Erik Lindgren,et al.  Modelling of induction hardening in low alloy steels , 2018 .

[7]  M. Wolff,et al.  Modelling of carbon diffusion and ferritic phase transformations in an unalloyed hypoeutectoid steel , 2007 .

[8]  J. Fuhrmann,et al.  Numerical simulation of induction hardening of steel , 1999 .

[9]  C Boller,et al.  Materials Data for Cyclic Loading , 1990 .

[10]  J. Bakken,et al.  Analytical and Experimental Validation of Electromagnetic Simulations Using COMSOL ® , re Inductance, Induction Heating and Magnetic Fields , 2011 .

[11]  Simon Ho,et al.  Optimization of a crankshaft rolling process for durability , 2009 .

[12]  W. Ramberg,et al.  Description of Stress-Strain Curves by Three Parameters , 1943 .

[13]  Dietmar Hömberg,et al.  Simulation of multi-frequency-induction-hardening including phase transitions and mechanical effects , 2014 .

[14]  Yanyao Jiang Stress and fatigue analyses of an induction hardened component , 1998, Metals and Materials.

[15]  R. Fajkoš,et al.  Fatigue limit of induction hardened railway axles , 2015 .

[16]  D. Ivanov,et al.  Simulation of Stress and Strain for Induction-Hardening Applications , 2013, Journal of Materials Engineering and Performance.

[18]  M. Leitner,et al.  Multiaxial fatigue strength assessment of electroslag remelted 50CrMo4 steel crankshafts , 2017 .

[19]  Om Prakash,et al.  Shot peening simulation using discrete and finite element methods , 2010, Adv. Eng. Softw..

[20]  Qingzhe Liu,et al.  Simulation of quenching involved in induction hardening including mechanical effects , 2013 .

[21]  Andy Triwinarko,et al.  Induction Heating Process Design Using COMSOL ® Multiphysics Software , 2011 .

[22]  Jerzy Barglik,et al.  3D modeling of induction hardening of gear wheels , 2014, J. Comput. Appl. Math..

[23]  Valery Rudnev,et al.  Handbook of Induction Heating , 2002 .

[24]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[25]  Franco Bonollo,et al.  Induction heat treatment of a ISO C45 steel bar: Experimental and numerical analysis , 2006 .

[26]  D. Coupard,et al.  Simulation of multiaxial fatigue strength of steel component treated by surface induction hardening and comparison with experimental results , 2011 .

[27]  L. Coffin,et al.  A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.

[28]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[29]  C. J. Tyne,et al.  Correlation of Yield Strength and Tensile Strength with Hardness for Steels , 2008, Journal of Materials Engineering and Performance.

[30]  Young‐kook Lee,et al.  Finite-element simulation of quenching incorporating improved transformation kinetics in a plain medium-carbon steel , 2012 .

[31]  Lianfang He,et al.  Numerical simulation and experimental investigation on the induction hardening of a ball screw , 2015 .

[32]  T. Guichard,et al.  Sysweld® : Welding and Heat Treatment Modelling Tools , 1995 .

[33]  V. Rudnev,et al.  Induction Hardening of Gears: a Review , 2003 .

[34]  Michael Vormwald,et al.  Statistical size effect on multiaxial fatigue strength of notched steel components , 2017 .

[35]  S. Manson Fatigue: A complex subject—Some simple approximations , 1965 .

[36]  B. Winderlich,et al.  Das Konzept der lokalen Dauerfestigkeit und seine Anwendung auf martensitische Randschichten, insbesondere Laserhärtungsschichten , 1990 .

[37]  O. Basquin The exponential law of endurance tests , 1910 .

[38]  D. Kovač,et al.  SIMULATION MODEL OF INDUCTION HEATING IN COMSOL MULTIPHYSICS , 2015 .

[39]  Volker Schulze,et al.  Application of the FEM for the prediction of the surface layer characteristics after shot peening , 2009 .

[40]  Philippe Bocher,et al.  Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears , 2016 .

[41]  M. Leitner,et al.  Fatigue and Fracture Behavior of Induction-Hardened and Superimposed Mechanically Post-treated Steel Surface Layers , 2018, Journal of Materials Engineering and Performance.