Mesoporous silicon nanotechnology for cancer application

RésuméMalgré les progrès réalisés dans les domaines de la chimiothérapie, radiothérapie ou de la chirurgie, le développement de stratégies innovantes pour améliorer la prise en charge des maladies cancéreuses est indispensable. L’approche multidisciplinaire des nanotechnologies, associant physique, chimie, biologie, mathématiques et ingénierie, offrent des avancées significatives dans les méthodes de diagnostic, de traitement et de prévention du cancer. Nous avons développé un système de nano-administration multi-niveaux (Multistage Delivery System) utilisant des particules de silicium mésoporeux qui permet de franchir les différentes barrières biologiques et de délivrer in situ des agents thérapeutiques aux cellules tumorales. En plus de cette nouvelle stratégie thérapeutique, nous avons développéune plateforme de nanoprotéomique permettant de détecter et identifier de nouveaux marqueurs pour le diagnostic précoce et le suivi thérapeutique. L’association de ces deux plateformes nanotechnologiques présente de fortes potentialités pour le développement d’une véritable médecine personnalisée.AbstractDespite the significant breakthroughs in tumor detection, surgery, chemotherapy, and radiotherapy, there remains a significant need for the development of innovative approaches to decrease cancer morbidity and mortality. Nanotechnology is a multidisciplinary approach associated with physics, biology, chemistry, mathematics, and engineering, offering unprecedented opportunities to improve the current medical and clinical practice. In this article, we present the development of multistage nanovector approach for a synergistic targeting and delivery of therapeutic agents, providing disruptive technology to overcome the biological barriers that impede efficient drug delivery. We further present an integrated multifunctional nanoproteomics platformcombined with mass spectrometry for the screening and discovery of biomarkers for early diagnosis and therapy monitoring. These two nanotechnology platforms together will provide potential for development of an effective personalized medicine.

[1]  N. Anderson,et al.  The Human Plasma Proteome , 2002, Molecular & Cellular Proteomics.

[2]  E. Ruoslahti,et al.  Vascular zip codes in angiogenesis and metastasis. , 2004, Biochemical Society transactions.

[3]  L. Norton,et al.  Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. , 1998, Cancer research.

[4]  J. Nickoloff Transcription enhances intrachromosomal homologous recombination in mammalian cells , 1992, Molecular and cellular biology.

[5]  M. Ferrari,et al.  Quantitative mechanics of endothelial phagocytosis of silicon microparticles , 2009, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[6]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[7]  Mauro Ferrari,et al.  Cellular association and assembly of a multistage delivery system. , 2010, Small.

[8]  M. Dukes,et al.  Arimidex®: A potent and selective fourth-generation aromatase inhibitor , 2004, Breast Cancer Research and Treatment.

[9]  A. J. Nijdam,et al.  Selective binding and enrichment for low‐molecular weight biomarker molecules in human plasma after exposure to nanoporous silica particles , 2006, Proteomics.

[10]  M. Neumaier,et al.  Preanalytical impact of sample handling on proteome profiling experiments with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 2005, Clinical chemistry.

[11]  Mauro Ferrari,et al.  Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. , 2008, Nature nanotechnology.

[12]  P. Tempst,et al.  Correcting common errors in identifying cancer-specific serum peptide signatures. , 2005, Journal of proteome research.

[13]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[14]  Mauro Ferrari,et al.  Design maps for nanoparticles targeting the diseased microvasculature. , 2008, Biomaterials.

[15]  P. Brown,et al.  Genomics and human disease—variations on variation , 1998, Nature Genetics.

[16]  Mauro Ferrari,et al.  Erratum: Cellular Association and Assembly of a Multistage Delivery System , 2010 .

[17]  Mauro Ferrari,et al.  Mitotic trafficking of silicon microparticles. , 2009, Nanoscale.

[18]  E. Diamandis Mass Spectrometry as a Diagnostic and a Cancer Biomarker Discovery Tool , 2004, Molecular & Cellular Proteomics.

[19]  Amanda Paulovich,et al.  Cancer biomarkers: a systems approach , 2006, Nature Biotechnology.

[20]  H. Ward Anti-oestrogen Therapy for Breast Cancer: A Trial of Tamoxifen at Two Dose Levels , 1973, British medical journal.

[21]  Mauro Ferrari,et al.  Tailored porous silicon microparticles: fabrication and properties. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  Ruth Etzioni,et al.  Early detection: The case for early detection , 2003, Nature Reviews Cancer.

[23]  A. J. Nijdam,et al.  Nanoporous surfaces as harvesting agents for mass spectrometric analysis of peptides in human plasma. , 2006, Journal of proteome research.

[24]  Mauro Ferrari,et al.  The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. , 2009, Biomaterials.

[25]  M. Ferrari,et al.  Clinical proteomics: Written in blood , 2003, Nature.