An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere

During the period October 1997 to September 1999 we obtained and analyzed over 100 millimeter-wave observations of Mars atmospheric CO line absorption for atmospheric temperature profiles. These measurements extend through one full Mars year (solar longitudes LS of 190° in 1997 to 180° in 1999) and coincide with atmospheric temperature profile and dust column measurements from the Thermal Emission Spectrometer (TES) experiment on board the Mars Global Surveyor (MGS) spacecraft. A comparison of Mars atmospheric temperatures retrieved by these distinct methods provides the first opportunity to place the long-term (1982–1999) millimeter retrievals of Mars atmospheric temperatures within the context of contemporaneous, spatially mapped spacecraft observations. Profile comparisons of 0–30 km altitude atmospheric temperatures retrieved with the two techniques agree typically to within the 5 K calibration accuracy of the millimeter observations. At the 0.5 mbar pressure level (∼25 km altitude) the 30°N/30°S average for TES infrared temperatures and the disk-averaged millimeter temperatures are also well correlated in their seasonal and dust-storm-related variations over the 1997–1999 period. This period includes the Noachis Terra regional dust storm, which led to very abrupt heating (∼15 K at 0.5 mbar) of the global Mars atmosphere at LS = 224° in 1997 [Christensen et al., 1998; Conrath et al., this issue; Smith et al., this issue]. Much colder (10–20 K) global atmospheric temperatures were observed during the 1997 versus 1977 perihelion periods (LS = 200°–330°), consistent with the much (2 to 8 times) lower global dust loading of the atmosphere during the 1997 perihelion dust storm season versus the Viking period of the 1977a,b storms. The 1998–1999 Mars atmosphere revealed by both the millimeter and TES observations is also 10–15 K colder than presented by the Viking climatology during the aphelion season (LS = 0°–180°, northern spring/summer) of Mars. We reassess the observational basis of the Viking dusty-warm climatology for this season to conclude that the global aphelion atmosphere of Mars is colder, less dusty, and cloudier than indicated by the established Viking climatology even for the Viking period. We also conclude that Mars atmospheric temperatures exhibit their most significant interannual variations during the perihelion dust storm season (10–20 K for LS = 200°–340°) and during the post-aphelion northern summer season (5–10 K for LS = 100°–200°).

[1]  M. Richardson,et al.  The Martian Atmosphere During the Viking Mission, I Infrared Measurements of Atmospheric Temperatures Revisited , 2000 .

[2]  John C. Pearl,et al.  Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing , 2000 .

[3]  D. Paige,et al.  Viking era water-ice clouds , 2000 .

[4]  David P. Hinson,et al.  Initial results from radio occultation measurements with Mars Global Surveyor , 1999 .

[5]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[6]  Jeffrey R. Johnson,et al.  Dust devil vortices seen by the Mars Pathfinder Camera , 1999 .

[7]  N. Thomas,et al.  Measurements of the atmospheric water vapor on Mars by the Imager for Mars Pathfinder , 1999 .

[8]  R. Todd Clancy,et al.  Hubble Space Telescope observations of the Martian aphelion cloud belt prior to the Pathfinder mission: Seasonal and interannual variations , 1999 .

[9]  A. Colaprete,et al.  Cloud formation under Mars Pathfinder conditions , 1999 .

[10]  M. Lemmon,et al.  Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder , 1999 .

[11]  Jeffrey R. Barnes,et al.  General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data , 1999 .

[12]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[13]  J. Schofield,et al.  Results of the Mars Pathfinder atmospheric structure investigation , 1999 .

[14]  R. Clancy,et al.  Minimal Aerosol Loading and Global Increases in Atmospheric Ozone during the 1996–1997 Martian Northern Spring Season , 1999 .

[15]  M. Richardson Comparison of microwave and infrared measurements of Martian atmospheric temperatures: Implications for short‐term climate variability , 1998 .

[16]  Esposito,et al.  The structure of the upper atmosphere of mars: In situ accelerometer measurements from mars global surveyor , 1998, Science.

[17]  R. Clark,et al.  Results from the Mars Global Surveyor Thermal Emission Spectrometer. , 1998, Science.

[18]  R. Clancy,et al.  CO2 ice clouds in the upper atmosphere of Mars , 1998 .

[19]  R. J. Reid,et al.  Results from the Mars Pathfinder camera. , 1997, Science.

[20]  S. Larsen,et al.  The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. , 1997, Science.

[21]  J. Pearl,et al.  MAPPING MARINER 9 DUST OPACITIES , 1997 .

[22]  Jeffrey R. Barnes,et al.  Meteorological predictions for the Mars Pathfinder lander , 1997 .

[23]  Jimmy D Bell,et al.  Absorption and scattering properties of the Martian dust in the solar wavelengths. , 1997, Journal of geophysical research.

[24]  Duane O. Muhleman,et al.  WATER VAPOR SATURATION AT LOW ALTITUDES AROUND MARS APHELION : A KEY TO MARS CLIMATE ? , 1996 .

[25]  R. Clancy,et al.  Annual (perihelion-aphelion) cycles in the photochemical behavior of the global Mars atmosphere , 1996 .

[26]  Kevin Hamilton,et al.  Comprehensive Model Simulation of Thermal Tides in the Martian Atmosphere , 1996 .

[27]  R. Clancy Atmospheric Dust-Water Ice Interactions: Do They Play Important Roles in the Current Mars Climate? , 1996 .

[28]  G. R. Gladstone,et al.  A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos , 1995 .

[29]  James B. Pollack,et al.  Viking Lander image analysis of Martian atmospheric dust , 1995 .

[30]  P. Drossart,et al.  Post‐Phobos model for the altitude and size distribution of dust in the low Martian atmosphere , 1995 .

[31]  R. Clancy,et al.  Monitoring Mars with the Hubble Space Telescope: 1990-1991 Observations , 1994 .

[32]  Jeffrey R. Barnes,et al.  Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal‐mean circulation , 1993 .

[33]  Richard W. Zurek,et al.  Interannual variability of planet-encircling dust storms on Mars , 1993 .

[34]  D. Muhleman,et al.  Mapping Mars water vapor with the Very Large Array , 1992 .

[35]  D. L. Anderson,et al.  Thermal emission spectrometer experiment: Mars Observer mission , 1992 .

[36]  J. Blamont,et al.  Vertical structure and size distributions of Martian aerosols from solar occultation measurements , 1992 .

[37]  Y. Langevin,et al.  Martian aerosol properties from the Phobos/ISM experiment , 1991 .

[38]  R. Todd Clancy,et al.  A new look at dust and clouds in the Mars atmosphere: analysis of emission-phase-function sequences from global viking IRTM observations , 1991 .

[39]  L. Esposito,et al.  Characteristics of aerosol phenomena in Martian atmosphere from KRFM experiment data , 1990 .

[40]  J. Pollack,et al.  Numerical simulations of the decay of Martian global dust storms , 1990 .

[41]  Duane O. Muhleman,et al.  Global changes in the 0–70 km thermal structure of the Mars atmosphere derived from 1975 to 1989 microwave CO spectra , 1989 .

[42]  R. M. Haberle,et al.  Diurnal variations in optical depth at Mars , 1989 .

[43]  Terry Z. Martin,et al.  Thermal infrared opacity of the Mars atmosphere , 1986 .

[44]  D. Muhleman,et al.  Variability of carbon monoxide in the mars atmosphere , 1983 .

[45]  Richard W. Zurek,et al.  Martian great dust storms: An update , 1982 .

[46]  T. Thorpe Mars atmospheric opacity effects observed in the northern hemisphere by Viking Orbiter Imaging , 1981 .

[47]  T. Martin Mean thermal and albedo behavior of the Mars surface and atmosphere over a Martian year , 1981 .

[48]  W. H. Michael,et al.  Viking radio occultation measurements of the atmosphere and topography of Mars: Data acquired during 1 Martian year of tracking , 1979 .

[49]  J. Pollack,et al.  Properties and effects of dust particles suspended in the Martian atmosphere , 1979 .

[50]  R. Zurek Solar heating of the Martian dusty atmosphere , 1978 .

[51]  A. Seiff,et al.  Structure of the atmosphere of Mars in summer at mid-latitudes , 1977 .

[52]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[53]  Carl Sagan,et al.  Physical properties of the particles composing the Martian dust storm of 1971–1972 , 1977 .

[54]  F. Palluconi,et al.  Infrared Thermal Mapping of the Martian Surface and Atmosphere: First Results , 1976, Science.

[55]  R. A. Hanel,et al.  Investigation of the Martian environment by infrared spectroscopy on Mariner 9 , 1972 .

[56]  P. Gierasch,et al.  The Effect of Dust on the Temperature of the Martian Atmosphere , 1972 .

[57]  R. Clancy,et al.  Dynamical properties of Mars water ice clouds and their interactions with atmospheric dust and radiation , 1999 .

[58]  Richard W. Zurek,et al.  The martian dust cycle. , 1992 .

[59]  J. Tillman,et al.  Interannual variability of Martian weather , 1985 .

[60]  Barney J. Conrath,et al.  Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971 , 1975 .