Qualitative and quantitative stability analysis of penta-rhythmic circuits

Inhibitory circuits of relaxation oscillators are often-used models for the dynamics of biological networks. We present a qualitative and quantitative stability analysis of such a circuit constituted by three reciprocally coupled oscillators of a Fitzhugh-Nagumo type as nodes. Depending on inhibitory strengths, and parameters of individual oscillators, the circuit exhibits polyrhythmicity of up to five simultaneously stable rhythms. With methods of bifurcation analysis and phase reduction, we investigate qualitative changes in stability of these circuit rhythms for a wide range of parameters. Furthermore, we quantify how robustly rhythms are maintained under random perturbations by monitoring phase diffusion in the circuit. Our findings allow us to describe how circuit dynamics relate to dynamics of individual nodes. We also find that quantitative and qualitative stability of polyrhythmicity do not always align.

[1]  J. Rogers Chaos , 1876, Molecular Vibrations.

[2]  Balth van der Pol Jun Docts. Sc.,et al.  LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart , 1928 .

[3]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[4]  S. E. Khaikin,et al.  Theory of Oscillators , 1966 .

[5]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[6]  B. M. Fulk MATH , 1992 .

[7]  Xiao-Jing Wang,et al.  Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons , 1992, Neural Computation.

[8]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[9]  Peter Franks,et al.  Models of harmful algal blooms , 1997 .

[10]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[11]  Jeff Hasty,et al.  Designer gene networks: Towards fundamental cellular control. , 2001, Chaos.

[12]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[13]  W. Beyn,et al.  Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .

[14]  J. Hasty,et al.  Synchronizing genetic relaxation oscillators by intercell signaling , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  B. Ermentrout,et al.  Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  H. Bade,et al.  Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms , 1980, Pflügers Archiv.

[17]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[18]  John Rinzel,et al.  Dynamics of Spiking Neurons Connected by Both Inhibitory and Electrical Coupling , 2003, Journal of Computational Neuroscience.

[19]  Eve Marder,et al.  Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks , 1994, Journal of Computational Neuroscience.

[20]  M. Bennett,et al.  Electrical Coupling and Neuronal Synchronization in the Mammalian Brain , 2004, Neuron.

[21]  Nancy Kopell,et al.  Rapid synchronization through fast threshold modulation , 1993, Biological Cybernetics.

[22]  Andrey Shilnikov,et al.  Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. , 2005, Physical review letters.

[23]  P. Bressloff,et al.  Bursting: The genesis of rhythm in the nervous system , 2005 .

[24]  Juan F. Poyatos,et al.  Dynamical Principles of Two-Component Genetic Oscillators , 2006, PLoS Comput. Biol..

[25]  Kevin L. Briggman,et al.  Imaging Dedicated and Multifunctional Neural Circuits Generating Distinct Behaviors , 2006, The Journal of Neuroscience.

[26]  M. Golubitsky,et al.  Nonlinear dynamics of networks: the groupoid formalism , 2006 .

[27]  Fernando Antoneli,et al.  Symmetry and Synchrony in Coupled Cell Networks 1: Fixed-Point Spaces , 2006, Int. J. Bifurc. Chaos.

[28]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[29]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[30]  E. Marder,et al.  How tightly tuned are network parameters? Insight from computational and experimental studies in small rhythmic motor networks. , 2007, Progress in brain research.

[31]  Andrey Shilnikov,et al.  When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons. , 2008, Physical review letters.

[32]  Ilya A. Rybak,et al.  Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis , 2009, Journal of Computational Neuroscience.

[33]  K. H.,et al.  NASA TECHNICAL TRANSLATION NASA TT F-14,723 IN REGARD TO BACTERIAL REDUCTION OF ORGANICALLY BOUND PHOSPHORIC ACID , 2009 .

[34]  Akira Sakurai,et al.  Functional Recovery after Lesion of a Central Pattern Generator , 2009, The Journal of Neuroscience.

[35]  G. Ermentrout,et al.  Multiple rhythmic states in a model of the respiratory central pattern generator. , 2009, Journal of neurophysiology.

[36]  Morten Brøns,et al.  Canards and mixed-mode oscillations in a forest pest model. , 2010, Theoretical population biology.

[37]  Rui C. Paiva,et al.  Hopf bifurcation in coupled cell networks with abelian symmetry 1 , 2010 .

[38]  Jonathan E. Rubin,et al.  Optimal Intrinsic Dynamics for Bursting in a Three-Cell Network , 2010, SIAM J. Appl. Dyn. Syst..

[39]  Andrey Shilnikov,et al.  Fast reciprocal inhibition can synchronize bursting neurons. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Cengiz Günay,et al.  Model Calcium Sensors for Network Homeostasis: Sensor and Readout Parameter Analysis from a Database of Model Neuronal Networks , 2010, The Journal of Neuroscience.

[41]  A. Selverston,et al.  Invertebrate central pattern generator circuits , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[42]  Boris Hasselblatt,et al.  Handbook of Dynamical Systems , 2010 .

[43]  David Terman,et al.  Mathematical foundations of neuroscience , 2010 .

[44]  P. Katz,et al.  Neural mechanisms underlying the evolvability of behaviour , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  Andrey Shilnikov,et al.  Order parameter for bursting polyrhythms in multifunctional central pattern generators. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Damon Afkari,et al.  ? ? ? ? ? ? ? ? ? ? ? ? ? 30 ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2011 .

[47]  Andrey Shilnikov,et al.  Spikes matter for phase-locked bursting in inhibitory neurons. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Andrey Shilnikov,et al.  Complete dynamical analysis of a neuron model , 2012 .

[49]  Modeling study of a Central Pattern Generator in the Melibe seaslug , 2012, BMC Neuroscience.

[50]  Jonathan E Rubin,et al.  Explicit maps to predict activation order in multiphase rhythms of a coupled cell network , 2012, Journal of mathematical neuroscience.

[51]  Martin Golubitsky,et al.  Network periodic solutions: patterns of phase-shift synchrony , 2012 .

[52]  Rodolphe Sepulchre,et al.  A Balance Equation Determines a Switch in Neuronal Excitability , 2012, PLoS Comput. Biol..

[53]  J. Rubin,et al.  Irregular activity arises as a natural consequence of synaptic inhibition. , 2013, Chaos.

[54]  Timothy J. Lewis,et al.  Phase response properties of half-center oscillators , 2013, Journal of Computational Neuroscience.

[55]  R. Clewley,et al.  Key Bifurcations of Bursting Polyrhythms in 3-Cell Central Pattern Generators , 2013, PloS one.

[56]  J. Schwabedal Parametric phase diffusion analysis of irregular oscillations , 2014 .

[57]  Alexander B Neiman,et al.  Robust design of polyrhythmic neural circuits. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  U. Feudel,et al.  Control of multistability , 2014 .

[59]  Andrey Shilnikov,et al.  Making a Swim Central Pattern Generator Out of Latent Parabolic Bursters , 2015, Int. J. Bifurc. Chaos.