Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries

[1]  Jun Lu,et al.  Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes , 2020, Nature Reviews Materials.

[2]  Xiulei Ji,et al.  ZnS coating of cathode facilitates lean‐electrolyte Li‐S batteries , 2019, Carbon Energy.

[3]  Liumin Suo,et al.  Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities , 2019, Nature Energy.

[4]  Y. Meng,et al.  Key Issues Hindering a Practical Lithium-Metal Anode , 2019, Trends in Chemistry.

[5]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[6]  Hong‐Jie Peng,et al.  Activating Inert Metallic Compounds for High-Rate Lithium-Sulfur Batteries Through In Situ Etching of Extrinsic Metal. , 2019, Angewandte Chemie.

[7]  K. Amine,et al.  30 Years of Lithium‐Ion Batteries , 2018, Advanced materials.

[8]  Dongping Lu,et al.  Enabling High-Energy-Density Cathode for Lithium-Sulfur Batteries. , 2018, ACS applied materials & interfaces.

[9]  Gerbrand Ceder,et al.  Efficient first-principles prediction of solid stability: Towards chemical accuracy , 2018, npj Computational Materials.

[10]  Jun Lu,et al.  High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries , 2018, Electrochemical Energy Reviews.

[11]  S. Dou,et al.  Homogeneous Sulfur–Cobalt Sulfide Nanocomposites as Lithium–Sulfur Battery Cathodes with Enhanced Reaction Kinetics , 2017 .

[12]  X. Lou,et al.  A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries , 2017 .

[13]  Dunmin Lin,et al.  A high-efficiency N/P co-doped graphene/CNT@porous carbon hybrid matrix as a cathode host for high performance lithium–sulfur batteries , 2017 .

[14]  M. Zheng,et al.  Co4N Nanosheet Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium-Sulfur Batteries. , 2017, ACS nano.

[15]  Shilin Mei,et al.  Porous Ti4O7 Particles with Interconnected‐Pore Structure as a High‐Efficiency Polysulfide Mediator for Lithium–Sulfur Batteries , 2017 .

[16]  Xu Xu,et al.  Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage , 2017, Science.

[17]  Meilin Liu,et al.  Unraveling the Nature of Anomalously Fast Energy Storage in T-Nb2O5. , 2017, Journal of the American Chemical Society.

[18]  H. A. Duarte,et al.  Structural, Electronic, and Thermodynamic Properties of the T and B Phases of Niobia: First-Principle Calculations. , 2017, The journal of physical chemistry. A.

[19]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[20]  Qiangfeng Xiao,et al.  Regenerative Polysulfide-Scavenging Layers Enabling Lithium-Sulfur Batteries with High Energy Density and Prolonged Cycling Life. , 2017, ACS nano.

[21]  S. Dacek,et al.  Thermodynamics of Phase Selection in MnO2 Framework Structures through Alkali Intercalation and Hydration. , 2017, Journal of the American Chemical Society.

[22]  Jingwei Xiang,et al.  TiN as a simple and efficient polysulfide immobilizer for lithium–sulfur batteries , 2016 .

[23]  Guoxiu Wang,et al.  3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithium‐Sulfur Batteries , 2016 .

[24]  Jitong Wang,et al.  Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium–sulfur battery , 2016 .

[25]  M. Armand,et al.  Transient existence of crystalline lithium disulfide Li2S2 in a lithium-sulfur battery , 2016 .

[26]  Alexander C. Forse,et al.  High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases. , 2016, Journal of the American Chemical Society.

[27]  L. Nazar,et al.  In Situ Reactive Assembly of Scalable Core-Shell Sulfur-MnO2 Composite Cathodes. , 2016, ACS nano.

[28]  G. Ceder,et al.  Energetics of MnO 2 polymorphs in density functional theory , 2016 .

[29]  X. Lou,et al.  Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries. , 2015, Angewandte Chemie.

[30]  L. Nazar,et al.  A Nitrogen and Sulfur Dual‐Doped Carbon Derived from Polyrhodanine@Cellulose for Advanced Lithium–Sulfur Batteries , 2015, Advanced materials.

[31]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[32]  Yanming Ma,et al.  Insight into the role of Li2S2 in Li–S batteries: a first-principles study , 2015 .

[33]  Xiaofei Yang,et al.  Fabrication of a nano-Li+-channel interlayer for high performance Li–S battery application , 2015 .

[34]  Donald J. Siegel,et al.  First-Principles Study of Redox End Members in Lithium−Sulfur Batteries , 2015 .

[35]  Xiao Liang,et al.  A highly efficient polysulfide mediator for lithium–sulfur batteries , 2015, Nature Communications.

[36]  M. Armand,et al.  Unravelling the role of Li 2 S 2 in lithium–sulfur batteries: A first principles study of its energetic and electronic properties , 2014 .

[37]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[38]  Jun Liu,et al.  Molecular structure and stability of dissolved lithium polysulfide species. , 2014, Physical chemistry chemical physics : PCCP.

[39]  Shuru Chen,et al.  Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes. , 2013, ACS applied materials & interfaces.

[40]  A. Sadek,et al.  A vein-like nanoporous network of Nb2O5 with a higher lithium intercalation discharge cut-off voltage , 2013 .

[41]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[42]  Hao Liu,et al.  β-MnO2 as a cathode material for lithium ion batteries from first principles calculations. , 2013, Physical chemistry chemical physics : PCCP.

[43]  Guangyuan Zheng,et al.  Nanostructured sulfur cathodes. , 2013, Chemical Society reviews.

[44]  Peng-Fei Wang,et al.  Effect of concurrent joule heat and charge trapping on RESET for NbAlO fabricated by atomic layer deposition , 2013, Nanoscale Research Letters.

[45]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[46]  Guangyuan Zheng,et al.  Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries , 2013, Nature Communications.

[47]  Matthew P. Yeager,et al.  Highly Efficient K0.15MnO2 Birnessite Nanosheets for Stable Pseudocapacitive Cathodes , 2012 .

[48]  Arumugam Manthiram,et al.  A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. , 2012, Chemical communications.

[49]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[50]  E. Carter,et al.  First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. , 2011, Physical chemistry chemical physics : PCCP.

[51]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[52]  G. Sposito,et al.  On the role of Mn(IV) vacancies in the photoreductive dissolution of hexagonal birnessite , 2009 .

[53]  G. Sposito,et al.  Defect-induced photoconductivity in layered manganese oxides: a density functional theory study. , 2007, Physical review letters.

[54]  A. Norman From Elemental Sulfur , 2007 .

[55]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[56]  T. Sasaki,et al.  Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light. , 2005, The journal of physical chemistry. B.

[57]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[58]  M. Burghammer,et al.  Structure of synthetic K-rich birnessite obtained by high-temperature decomposition of KMnO4. I. two-layer polytype from 800 °C experiment , 2003 .

[59]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[60]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[61]  D. Banerjee,et al.  Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation , 1998 .

[62]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[63]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[64]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[65]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[66]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[67]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[68]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[69]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[70]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[71]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[72]  K. Kato,et al.  Die Kristallstruktur von T-Nb2O5 , 1975 .

[73]  A R Plummer Introduction to Solid State Physics , 1967 .

[74]  Yueying Peng,et al.  High sulfur loading lithium–sulfur batteries based on a upper current collector electrode with lithium-ion conductive polymers , 2017 .

[75]  Shengping Wang,et al.  New Insights for the Cyclic Performance of Li/MnO2 Batteries Using a Simple Electrochemical Process , 2015 .

[76]  Jianming Zheng,et al.  Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries , 2015 .

[77]  Benedicte Eikeland Nilssen Stability of Conductive Carbon Additives for High-voltage Li-ion Battery Cathodes , 2014 .

[78]  Shizhao Xiong,et al.  Insights into Li-S Battery Cathode Capacity Fading Mechanisms: Irreversible Oxidation of Active Mass during Cycling , 2012 .

[79]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[80]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[81]  X. S. Chen,et al.  First-principle calculations , 2006 .

[82]  E. P. Lewis In perspective. , 1972, Nursing outlook.