Smoothed dissipative particle dynamics.

We present a fluid particle model that is both a thermodynamically consistent version of smoothed particle hydrodynamics (SPH) and a version of dissipative particle dynamics (DPD), capturing the best of both methods. The model is a discrete version of Navier-Stokes equations, like SPH, and includes thermal fluctuations, like DPD. This model solves some problems with the physical interpretation of the original DPD model.

[1]  H. C. Öttinger Relativistic and nonrelativistic description of fluids with anisotropic heat conduction , 1998 .

[2]  Español,et al.  Hydrodynamics from dissipative particle dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  S. Hess,et al.  EQUILIBRIUM AND NONEQUILIBRIUM THERMOMECHANICS FOR AN EFFECTIVE PAIR POTENTIAL USED IN SMOOTH PARTICLE APPLIED MECHANICS , 1996 .

[4]  M. H. Ernst,et al.  Static and dynamic properties of dissipative particle dynamics , 1997, cond-mat/9702036.

[5]  H. C. Öttinger GENERIC Formulation of Boltzmann’s Kinetic Equation , 1997 .

[6]  P Español,et al.  Thermodynamically consistent mesoscopic fluid particle model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  W. Benz,et al.  Applications of Smooth Particle Hydrodynamics (SPH) to astrophysical problems , 1987 .

[8]  Yves Garrabos,et al.  Experimental Evidence for Brillouin Asymmetry Induced by a Temperature Gradient , 1980 .

[9]  H. Posch,et al.  Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  F. Javier de la Rubia,et al.  Mixing and equilibrium probability densities in classical statistical mechanics , 1992 .

[11]  G L Paul,et al.  Observation of a long-time tail in Brownian motion , 1981 .

[12]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[13]  P. Español,et al.  FLUID PARTICLE MODEL , 1998 .

[14]  Fluid particle dynamics: A synthesis of dissipative particle dynamics and smoothed particle dynamics , 1997, cond-mat/9705230.

[15]  Young W. Kim,et al.  Direct Measurement of the Velocity Autocorrelation Function for a Brownian Test Particle , 1980 .

[16]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[17]  Hans Christian Öttinger,et al.  General projection operator formalism for the dynamics and thermodynamics of complex fluids , 1998 .

[18]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[19]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[20]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[21]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[22]  Anthony Peter Whitworth,et al.  A new prescription for viscosity in smoothed particle hydrodynamics. , 1996 .

[23]  A. Martin-Löf,et al.  Fluctuating hydrodynamics and Brownian motion , 1973 .

[24]  S. Miyama,et al.  Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics , 1994 .

[25]  P. Cleary,et al.  Conduction Modelling Using Smoothed Particle Hydrodynamics , 1999 .

[26]  I. Pagonabarraga,et al.  Dissipative particle dynamics for interacting systems , 2001, cond-mat/0105075.

[27]  Pep Español,et al.  Large scale and mesoscopic hydrodynamics for dissipative particle dynamics , 2001 .

[28]  Thermodynamically Admissible Form for Discrete Hydrodynamics , 1999, cond-mat/9901101.

[29]  R. Ouillon,et al.  Depolarized scattering from para and normal hydrogen , 1985 .

[30]  H. Posch,et al.  Viscous conducting flows with smooth-particle applied mechanics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[32]  D. Beysens Fluctuations anisotropy arising from velocity or temperature gradients , 1983 .