Survey of heat transfer mechanisms in a slurry bubble column

Heat transfer mechanisms in the bulk and distributor regions of a slurry bubble column are investigated based on the measurements of local heat transfer in a 0.28 m diameter Plexiglas column. The gas, liquid and solid phases used are oil-free compressed air, tap water and 35 μm glass beads. The slurry concentration and superficial gas velocity are varied from 0 to 40 vol% and 0.05 to 0.30 m/s respectively. Measurements have been made with a fast response heat flux probe which provided local instantaneous heat transfer coefficients. The time-averaged heat transfer coefficients in the bulk region were on average about 50% higher than the distributor region of the column. The wall region heat transfer coefficients are well predicted by the correlation of Deckwer et al. (1980). Heat transfer mechanism in column centre can be adequately described by the consecutive film and surface renewal model. Les mecanismes de transfert de chaleur dans le coeur et dans la region du distributeur d'une colonne a bulles a suspensions sont etudies en mesurant le transfert de chaleur local dans une colonne en plexiglass de 0.28 m. Les phases gazeuse, liquide et solide utilisees sont de l'air cornprime dehuile, de l'eau du robinet et des billes de verre de 35 μm. On a fait varier la concentration des suspensions et la vitesse de gaz superficielle de 0 a 40% en volume et de 0.05 a 0.30 m/s, respectivement. Les mesures ont ete faites a l'aide d'une sonde de flux de chaleur a reponse rapide qui fournit les coefficients de transfert de chaleur instantanes locaux. Les coefficients de transfert de chaleur moyennes dans le temps dans le coeur etaient, en rnoyenne, environ 50% superieurs a ceux de la region du distributeur dans la colonne. Les coefficients de transfert de chaleur de la region de la paroi sont bien predits par la cordation de Deckwer et al. (1980). Le mecanisme de transfert de chaleur au centre de la colonne peut ětre adequatement decrit par le modele de renouvellement de surface et de film consecutif.

[1]  W. Deckwer,et al.  On the mechanism of heat transfer in bubble column reactors , 1980 .

[2]  D. Wasan,et al.  Consecutive film and surface renewal mechanism for heat or mass transfer from a wall , 1969 .

[3]  H. Li,et al.  Heat Transfer and Hydrodynamics in a Three-Phase Slurry Bubble Column , 1997 .

[4]  S. Saxena,et al.  Heat transfer and gas holdup studies in a bubble column: Air‐water‐sand system , 1992 .

[5]  E. Barnea,et al.  A generalized approach to the fluid dynamics of particulate systems: Part 1. General correlation for fluidization and sedimentation in solid multiparticle systems , 1973 .

[6]  S. Saxena,et al.  Heat transfer from a cylindrical probe immersed in a three-phase slurry bubble column , 1990 .

[7]  S. Saxena,et al.  HEAT-TRANSFER AND GAS-HOLDUP STUDIES IN A BUBBLE COLUMN : AIR-WATER-GLASS BEAD SYSTEM , 1990 .

[8]  Jyeshtharaj B. Joshi,et al.  Axial mixing in multiphase contactors - a unified correlation , 1980 .

[9]  L. Fan,et al.  Heat-transfer characteristics in viscous gas-liquid and gas-liquid-solid systems , 1994 .

[10]  Hisashi Morikawa,et al.  GAS HOLDUP AND AXIAL DISPERSION IN GAS-LIQUID CONCURRENT BUBBLE COLUMN , 1987 .

[11]  Takashi Akehata,et al.  BEHAVIOR OF BUBBLES IN LARGE SCALE BUBBLE COLUMN , 1979 .

[13]  Katsuhiko Muroyama,et al.  MEASUREMENT OF BEHAVIOR OF GAS BUBBLES AND GAS HOLDUP IN A SLURRY BUBBLE COLUMN BY A DUAL ELECTRORESISTIVITY PROBE METHOD , 1986 .

[14]  V. Vand Viscosity of solutions and suspensions; theory. , 1948, The Journal of physical and colloid chemistry.

[15]  L. Fan,et al.  Near-wake structure of a single gas bubble in a two-dimensional liquid-solid fluidized bed: Vortex shedding and wake size variation , 1988 .

[16]  Shigeharu Morooka,et al.  Liquid holdup and heat transfer coefficient between bed and wall in liquid solid and gas-liquid-solid fluidized beds , 1981 .

[17]  M. Bergougnou,et al.  Heat transfer in three-phase fluidized beds , 1978 .

[18]  W. Deckwer,et al.  Unified correlation of heat transfer coefficients in three-phase fluidized beds , 1989 .

[19]  Liang-Shih Fan,et al.  Mechanism of heat transfer in bubbly liquid and liquid‐solid systems: Single bubble injection , 1992 .

[20]  Korekazu Ueyama,et al.  Properties of recirculating turbulent two phase flow in gas bubble columns , 1979 .

[21]  S. D. Kim,et al.  Heat transfer characteristics in two‐ and three‐phase slurry‐fluidized beds , 1986 .

[22]  Shigeharu Morooka,et al.  Behavior of Gas Bubbles in Bubble Columns , 1980 .

[23]  S. D. Kim,et al.  HEAT TRANSFER CHARACTERISTICS OF THREE PHASE FLUIDIZED BEDS , 1985 .

[24]  Hanning Li,et al.  Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column , 2000 .

[25]  Wolf-Dieter Deckwer,et al.  Hydrodynamic Properties of the Fischer-Tropsch Slurry Process , 1980 .

[26]  E. Ziegler,et al.  Heat transfer in three‐phase fluidized beds , 1983 .