From classic statistical characterization to fuzzy windowing based characterization for the exploratory analysis of miscellaneous time variables: example in the field of car driving studies

The problem of data characterization of quantitative and qualitative measurement scales is stated in the context of an exploratory multivariate statistical analysis. An example from a car driving study is considered where the quantitative data correspond to the car and head movements, while the qualitative data correspond to objects being viewed--road, bridge, sign-post, etc. For each of these two sets, the literature is analyzed first in terms of data characterizing methods and relationship obtaining methods. Then we propose to evaluate and compare nine quantitative data characteriing methods: five corresponding to classic statistical indicators, two to crisp space windowing with either two or three windows, and two on fuzzy windowing with either two or three windows. Logically the last method appears as the best (according to our evaluation procedure). Then we propose a bidimensional fuzzy windowing instead of a crisp one to characterize the gaze positions. Finally the multiple correspondence analysis is used to investigate the membership value averages obtained from the characterization stage.

[1]  S. M. Rytov,et al.  Principles of statistical radiophysics , 1987 .

[2]  F. Kianifard Applied Multivariate Data Analysis: Volume II: Categorical and Multivariate Methods , 1994 .

[3]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[4]  J. D. Jobson,et al.  Regression and experimental design , 1991 .

[5]  Lawrence W. Stark,et al.  Visual perception and sequences of eye movement fixations: a stochastic modeling approach , 1992, IEEE Trans. Syst. Man Cybern..

[6]  J. D. Jobson,et al.  Categorical and multivariate methods , 1992 .

[7]  André Hardy,et al.  An examination of procedures for determining the number of clusters in a data set , 1994 .

[8]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[9]  Thomas B. Sheridan Reflections on information and information value , 1995, IEEE Trans. Syst. Man Cybern..

[10]  F. J. Anscombe,et al.  Graphs in Statistical Analysis , 1973 .

[11]  Michael G. Kahn,et al.  The visual display of temporal information , 1991, Artif. Intell. Medicine.

[12]  Hans Godthelp,et al.  Speed Choice and Steering Behavior in Curve Driving , 1996, Hum. Factors.

[13]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[14]  A. Quaqazeh L'analyse des séries chronologiques décalées. Principes d'interprétation sur des cas modèles , 1987 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Shyi-Ming Chen,et al.  A comparison of similarity measures of fuzzy values , 1995 .

[17]  Waldemar Karwowski The Human World of Fuzziness, Human Entropy and General Fuzzy Systems Theory , 1992 .

[18]  M. G. Bulmer,et al.  Principles of Statistics. , 1969 .

[19]  F. J. Gallego,et al.  Codage flou en analyse des correspondances , 1982 .

[20]  Shien-Ming Wu,et al.  Time series and system analysis with applications , 1983 .

[21]  Ben Sidaway,et al.  Time-to-Collision Estimation in a Simulated Driving Task , 1996, Hum. Factors.

[22]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[23]  P. Sprent,et al.  19. Applied Nonparametric Statistical Methods , 1995 .

[24]  Jan L. A. van Rijckevorsek,et al.  Component and correspondence analysis: dimension reduction by functional approximation , 1988 .

[25]  Gary Michael Maranell,et al.  Scaling: A Sourcebook for Behavioral Scientists , 1974 .

[26]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[27]  Donald J. Berndt,et al.  Finding Patterns in Time Series: A Dynamic Programming Approach , 1996, Advances in Knowledge Discovery and Data Mining.

[28]  C. A. Murthy,et al.  Finding a Subset of Representative Points in a Data Set , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[29]  E. Dudewicz,et al.  Modern Mathematical Statistics. , 1990 .

[30]  Ronald R. Yager,et al.  Counting the number of classes in a fuzzy set , 1993, IEEE Trans. Syst. Man Cybern..

[31]  A. D. Gordon,et al.  Correspondence Analysis Handbook. , 1993 .

[32]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[33]  Eric R. Ziegel,et al.  Applied Multivariate Data Analysis , 2002, Technometrics.

[34]  P. Loslever,et al.  Marriage of fuzzy sets and multiple correspondence analysis: Examples with subjective interval data and biomedical signals , 1999, Fuzzy Sets Syst..